Combining Texts

Ideas for 'The Evolution of Logic', 'Principia Mathematica' and 'Constructibility and Mathematical Existence'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


13 ideas

6. Mathematics / A. Nature of Mathematics / 2. Geometry
Newton developed a kinematic approach to geometry [Newton, by Kitcher]
     Full Idea: The reduction of the problems of tangents, normals, curvature, maxima and minima were effected by Newton's kinematic approach to geometry.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Philip Kitcher - The Nature of Mathematical Knowledge 10.1
     A reaction: This approach apparently contrasts with that of Leibniz.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The less-than relation < well-orders, and partially orders, and totally orders the ordinal numbers [Hart,WD]
     Full Idea: We can show (using the axiom of choice) that the less-than relation, <, well-orders the ordinals, ...and that it partially orders the ordinals, ...and that it totally orders the ordinals.
     From: William D. Hart (The Evolution of Logic [2010], 1)
The axiom of infinity with separation gives a least limit ordinal ω [Hart,WD]
     Full Idea: The axiom of infinity with separation yields a least limit ordinal, which is called ω.
     From: William D. Hart (The Evolution of Logic [2010], 3)
There are at least as many infinite cardinals as transfinite ordinals (because they will map) [Hart,WD]
     Full Idea: Since we can map the transfinite ordinals one-one into the infinite cardinals, there are at least as many infinite cardinals as transfinite ordinals.
     From: William D. Hart (The Evolution of Logic [2010], 1)
Von Neumann's ordinals generalise into the transfinite better, because Zermelo's ω is a singleton [Hart,WD]
     Full Idea: It is easier to generalize von Neumann's finite ordinals into the transfinite. All Zermelo's nonzero finite ordinals are singletons, but if ω were a singleton it is hard to see how if could fail to be the successor of its member and so not a limit.
     From: William D. Hart (The Evolution of Logic [2010], 3)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
19th century arithmetization of analysis isolated the real numbers from geometry [Hart,WD]
     Full Idea: The real numbers were not isolated from geometry until the arithmetization of analysis during the nineteenth century.
     From: William D. Hart (The Evolution of Logic [2010], 1)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
We can establish truths about infinite numbers by means of induction [Hart,WD]
     Full Idea: Mathematical induction is a way to establish truths about the infinity of natural numbers by a finite proof.
     From: William D. Hart (The Evolution of Logic [2010], 5)
     A reaction: If there are truths about infinities, it is very tempting to infer that the infinities must therefore 'exist'. A nice, and large, question in philosophy is whether there can be truths without corresponding implications of existence.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Quantities and ratios which continually converge will eventually become equal [Newton]
     Full Idea: Quantities and the ratios of quantities, which in any finite time converge continually to equality, and, before the end of that time approach nearer to one another by any given difference become ultimately equal.
     From: Isaac Newton (Principia Mathematica [1687], Lemma 1), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.2
     A reaction: Kitcher observes that, although Newton relies on infinitesimals, this quotation expresses something close to the later idea of a 'limit'.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid has a unique parallel, spherical geometry has none, and saddle geometry has several [Hart,WD]
     Full Idea: There is a familiar comparison between Euclid (unique parallel) and 'spherical' geometry (no parallel) and 'saddle' geometry (several parallels).
     From: William D. Hart (The Evolution of Logic [2010], 2)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Chihara's system is a variant of type theory, from which he can translate sentences [Chihara, by Shapiro]
     Full Idea: Chihara's system is a version of type theory. Translate thus: replace variables of sets of type n with level n variables over open sentences, replace membership/predication with satisfaction, and high quantifiers with constructability quantifiers.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Philosophy of Mathematics 7.4
We can replace type theory with open sentences and a constructibility quantifier [Chihara, by Shapiro]
     Full Idea: Chihara's system is similar to simple type theory; he replaces each type with variables over open sentences, replaces membership (or predication) with satisfaction, and replaces quantifiers over level 1+ variables with constructability quantifiers.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Thinking About Mathematics 9.2
     A reaction: This is interesting for showing that type theory may not be dead. The revival of supposedly dead theories is the bread-and-butter of modern philosophy.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics makes existence claims, but philosophers usually say those are never analytic [Hart,WD]
     Full Idea: The thesis that no existence proposition is analytic is one of the few constants in philosophical consciences, but there are many existence claims in mathematics, such as the infinity of primes, five regular solids, and certain undecidable propositions.
     From: William D. Hart (The Evolution of Logic [2010], 2)
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Introduce a constructibility quantifiers (Cx)Φ - 'it is possible to construct an x such that Φ' [Chihara, by Shapiro]
     Full Idea: Chihara has proposal a modal primitive, a 'constructability quantifier'. Syntactically it behaves like an ordinary quantifier: Φ is a formula, and x a variable. Then (Cx)Φ is a formula, read as 'it is possible to construct an x such that Φ'.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Philosophy of Mathematics 7.4
     A reaction: We only think natural numbers are infinite because we see no barrier to continuing to count, i.e. to construct new numbers. We accept reals when we know how to construct them. Etc. Sounds promising to me (though not to Shapiro).