Combining Texts

Ideas for 'Individuals without Sortals', 'Contextualism Defended' and 'The Principles of Mathematics'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


3 ideas

8. Modes of Existence / A. Relations / 1. Nature of Relations
Philosophers of logic and maths insisted that a vocabulary of relations was essential [Russell, by Heil]
     Full Idea: Relations were regarded with suspicion, until philosophers working in logic and mathematics advanced reasons to doubt that we could provide anything like an adequate description of the world without developing a relational vocabulary.
     From: report of Bertrand Russell (The Principles of Mathematics [1903], Ch.26) by John Heil - Relations
     A reaction: [Heil cites Russell as the only reference] A little warning light, that philosophers describing the world managed to do without real relations, and it was only for the abstraction of logic and maths that they became essential.
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
'Reflexiveness' holds between a term and itself, and cannot be inferred from symmetry and transitiveness [Russell]
     Full Idea: The property of a relation which insures that it holds between a term and itself is called by Peano 'reflexiveness', and he has shown, contrary to what was previously believed, that this property cannot be inferred from symmetry and transitiveness.
     From: Bertrand Russell (The Principles of Mathematics [1903], §209)
     A reaction: So we might say 'this is a sentence' has a reflexive relation, and 'this is a wasp' does not. While there are plenty of examples of mental properties with this property, I'm not sure that it makes much sense of a physical object. Indexicality...
8. Modes of Existence / A. Relations / 4. Formal Relations / b. Equivalence relation
Symmetrical and transitive relations are formally like equality [Russell]
     Full Idea: Relations which are both symmetrical and transitive are formally of the nature of equality.
     From: Bertrand Russell (The Principles of Mathematics [1903], §209)
     A reaction: This is the key to the whole equivalence approach to abstraction and Frege's definition of numbers. Establish equality conditions is the nearest you can get to saying what such things are. Personally I think we can say more, by revisiting older views.