Combining Texts

All the ideas for 'Introduction to 'Language Truth and Logic'', 'Centring' and 'Philosophies of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


56 ideas

2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions replace a complete sentence containing the expression [George/Velleman]
     Full Idea: A contextual definition shows how to analyse an expression in situ, by replacing a complete sentence (of a particular form) in which the expression occurs by another in which it does not.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.2)
     A reaction: This is a controversial procedure, which (according to Dummett) Frege originally accepted, and later rejected. It might not be the perfect definition that replacing just the expression would give you, but it is a promising step.
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions quantify over the thing being defined [George/Velleman]
     Full Idea: When a definition contains a quantifier whose range includes the very entity being defined, the definition is said to be 'impredicative'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.2)
     A reaction: Presumably they are 'impredicative' because they do not predicate a new quality in the definiens, but make use of the qualities already known.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'power set' of A is all the subsets of A [George/Velleman]
     Full Idea: The 'power set' of A is all the subsets of A. P(A) = {B : B ⊆ A}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman]
     Full Idea: The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}}. The existence of this set is guaranteed by three applications of the Axiom of Pairing.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: See Idea 10100 for the Axiom of Pairing.
Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman]
     Full Idea: The 'Cartesian Product' of any two sets A and B is the set of all ordered pairs <a, b> in which a ∈ A and b ∈ B, and it is denoted as A x B.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
Grouping by property is common in mathematics, usually using equivalence [George/Velleman]
     Full Idea: The idea of grouping together objects that share some property is a common one in mathematics, ...and the technique most often involves the use of equivalence relations.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
'Equivalence' is a reflexive, symmetric and transitive relation; 'same first letter' partitions English words [George/Velleman]
     Full Idea: A relation is an equivalence relation if it is reflexive, symmetric and transitive. The 'same first letter' is an equivalence relation on the set of English words. Any relation that puts a partition into clusters will be equivalence - and vice versa.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This is a key concept in the Fregean strategy for defining numbers.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman]
     Full Idea: ZFC is a theory concerned only with sets. Even the elements of all of the sets studied in ZFC are also sets (whose elements are also sets, and so on). This rests on one clearly pure set, the empty set Φ. ..Mathematics only needs pure sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This makes ZFC a much more metaphysically comfortable way to think about sets, because it can be viewed entirely formally. It is rather hard to disentangle a chair from the singleton set of that chair.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Axiom of Extensionality: for all sets x and y, if x and y have the same elements then x = y [George/Velleman]
     Full Idea: The Axiom of Extensionality says that for all sets x and y, if x and y have the same elements then x = y.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This seems fine in pure set theory, but hits the problem of renates and cordates in the real world. The elements coincide, but the axiom can't tell you why they coincide.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Axiom of Pairing: for all sets x and y, there is a set z containing just x and y [George/Velleman]
     Full Idea: The Axiom of Pairing says that for all sets x and y, there is a set z containing x and y, and nothing else. In symbols: ∀x∀y∃z∀w(w ∈ z ↔ (w = x ∨ w = y)).
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: See Idea 10099 for an application of this axiom.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
The Axiom of Reducibility made impredicative definitions possible [George/Velleman]
     Full Idea: The Axiom of Reducibility ...had the effect of making impredicative definitions possible.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
ZFC can prove that there is no set corresponding to the concept 'set' [George/Velleman]
     Full Idea: Sets, unlike extensions, fail to correspond to all concepts. We can prove in ZFC that there is no set corresponding to the concept 'set' - that is, there is no set of all sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
     A reaction: This is rather an important point for Frege. However, all concepts have extensions, but they may be proper classes, rather than precisely defined sets.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
As a reduction of arithmetic, set theory is not fully general, and so not logical [George/Velleman]
     Full Idea: The problem with reducing arithmetic to ZFC is not that this theory is inconsistent (as far as we know it is not), but rather that is not completely general, and for this reason not logical. For example, it asserts the existence of sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
     A reaction: Note that ZFC has not been proved consistent.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Asserting Excluded Middle is a hallmark of realism about the natural world [George/Velleman]
     Full Idea: A hallmark of our realist stance towards the natural world is that we are prepared to assert the Law of Excluded Middle for all statements about it. For all statements S, either S is true, or not-S is true.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
     A reaction: Personally I firmly subscribe to realism, so I suppose I must subscribe to Excluded Middle. ...Provided the statement is properly formulated. Or does liking excluded middle lead me to realism?
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' is a meaning-assignment which makes all the axioms true [George/Velleman]
     Full Idea: A 'model' of a theory is an assignment of meanings to the symbols of its language which makes all of its axioms come out true.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: If the axioms are all true, and the theory is sound, then all of the theorems will also come out true.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Differences between isomorphic structures seem unimportant [George/Velleman]
     Full Idea: Mathematicians tend to regard the differences between isomorphic mathematical structures as unimportant.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This seems to be a pointer towards Structuralism as the underlying story in mathematics. The intrinsic character of so-called 'objects' seems unimportant. How theories map onto one another (and onto the world?) is all that matters?
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is a purely syntactic property, unlike the semantic property of soundness [George/Velleman]
     Full Idea: Consistency is a purely syntactic property, unlike the semantic property of soundness.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
A 'consistent' theory cannot contain both a sentence and its negation [George/Velleman]
     Full Idea: If there is a sentence such that both the sentence and its negation are theorems of a theory, then the theory is 'inconsistent'. Otherwise it is 'consistent'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness is a semantic property, unlike the purely syntactic property of consistency [George/Velleman]
     Full Idea: Soundness is a semantic property, unlike the purely syntactic property of consistency.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
5. Theory of Logic / K. Features of Logics / 4. Completeness
A 'complete' theory contains either any sentence or its negation [George/Velleman]
     Full Idea: If there is a sentence such that neither the sentence nor its negation are theorems of a theory, then the theory is 'incomplete'. Otherwise it is 'complete'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: Interesting questions are raised about undecidable sentences, irrelevant sentences, unknown sentences....
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Rational numbers give answers to division problems with integers [George/Velleman]
     Full Idea: We can think of rational numbers as providing answers to division problems involving integers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Cf. Idea 10102.
The integers are answers to subtraction problems involving natural numbers [George/Velleman]
     Full Idea: In defining the integers in set theory, our definition will be motivated by thinking of the integers as answers to subtraction problems involving natural numbers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Typical of how all of the families of numbers came into existence; they are 'invented' so that we can have answers to problems, even if we can't interpret the answers. It it is money, we may say the minus-number is a 'debt', but is it? Cf Idea 10106.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers provide answers to square root problems [George/Velleman]
     Full Idea: One reason for introducing the real numbers is to provide answers to square root problems.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Presumably the other main reasons is to deal with problems of exact measurement. It is interesting that there seem to be two quite distinct reasons for introducing the reals. Cf. Ideas 10102 and 10106.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Logicists say mathematics is applicable because it is totally general [George/Velleman]
     Full Idea: The logicist idea is that if mathematics is logic, and logic is the most general of disciplines, one that applies to all rational thought regardless of its content, then it is not surprising that mathematics is widely applicable.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.2)
     A reaction: Frege was keen to emphasise this. You are left wondering why pure logic is applicable to the physical world. The only account I can give is big-time Platonism, or Pythagoreanism. Logic reveals the engine-room of nature, where the design is done.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The classical mathematician believes the real numbers form an actual set [George/Velleman]
     Full Idea: Unlike the intuitionist, the classical mathematician believes in an actual set that contains all the real numbers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order induction is stronger as it covers all concepts, not just first-order definable ones [George/Velleman]
     Full Idea: The first-order version of the induction axiom is weaker than the second-order, because the latter applies to all concepts, but the first-order applies only to concepts definable by a formula in the first-order language of number theory.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7 n7)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The Incompleteness proofs use arithmetic to talk about formal arithmetic [George/Velleman]
     Full Idea: The idea behind the proofs of the Incompleteness Theorems is to use the language of Peano Arithmetic to talk about the formal system of Peano Arithmetic itself.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: The mechanism used is to assign a Gödel Number to every possible formula, so that all reasonings become instances of arithmetic.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A successor is the union of a set with its singleton [George/Velleman]
     Full Idea: For any set x, we define the 'successor' of x to be the set S(x) = x U {x}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This is the Fregean approach to successor, where the Dedekind approach takes 'successor' to be a primitive. Frege 1884:§76.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Frege's Theorem shows the Peano Postulates can be derived from Hume's Principle [George/Velleman]
     Full Idea: The derivability of Peano's Postulates from Hume's Principle in second-order logic has been dubbed 'Frege's Theorem', (though Frege would not have been interested, because he didn't think Hume's Principle gave an adequate definition of numebrs).
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.8 n1)
     A reaction: Frege said the numbers were the sets which were the extensions of the sets created by Hume's Principle.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory can prove the Peano Postulates [George/Velleman]
     Full Idea: The Peano Postulates can be proven in ZFC.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Talk of 'abstract entities' is more a label for the problem than a solution to it [George/Velleman]
     Full Idea: One might well wonder whether talk of abstract entities is less a solution to the empiricist's problem of how a priori knowledge is possible than it is a label for the problem.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Intro)
     A reaction: This pinpoints my view nicely. What the platonist postulates is remote, bewildering, implausible and useless!
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
If mathematics is not about particulars, observing particulars must be irrelevant [George/Velleman]
     Full Idea: As, in the logicist view, mathematics is about nothing particular, it is little wonder that nothing in particular needs to be observed in order to acquire mathematical knowledge.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002])
     A reaction: At the very least we can say that no one would have even dreamt of the general system of arithmetic is they hadn't had experience of the particulars. Frege thought generality ensured applicability, but extreme generality might entail irrelevance.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
In the unramified theory of types, the types are objects, then sets of objects, sets of sets etc. [George/Velleman]
     Full Idea: In the unramified theory of types, all objects are classified into a hierarchy of types. The lowest level has individual objects that are not sets. Next come sets whose elements are individuals, then sets of sets, etc. Variables are confined to types.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: The objects are Type 0, the basic sets Type 1, etc.
The theory of types seems to rule out harmless sets as well as paradoxical ones. [George/Velleman]
     Full Idea: The theory of types seems to rule out harmless sets as well as paradoxical ones. If a is an individual and b is a set of individuals, then in type theory we cannot talk about the set {a,b}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Since we cheerfully talk about 'Cicero and other Romans', this sounds like a rather disasterous weakness.
Type theory has only finitely many items at each level, which is a problem for mathematics [George/Velleman]
     Full Idea: A problem with type theory is that there are only finitely many individuals, and finitely many sets of individuals, and so on. The hierarchy may be infinite, but each level is finite. Mathematics required an axiom asserting infinitely many individuals.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Most accounts of mathematics founder when it comes to infinities. Perhaps we should just reject them?
Type theory prohibits (oddly) a set containing an individual and a set of individuals [George/Velleman]
     Full Idea: If a is an individual and b is a set of individuals, then in the theory of types we cannot talk about the set {a,b}, since it is not an individual or a set of individuals, ...but it is hard to see what harm can come from it.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Bounded quantification is originally finitary, as conjunctions and disjunctions [George/Velleman]
     Full Idea: In the first instance all bounded quantifications are finitary, for they can be viewed as abbreviations for conjunctions and disjunctions.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
     A reaction: This strikes me as quite good support for finitism. The origin of a concept gives a good guide to what it really means (not a popular view, I admit). When Aristotle started quantifying, I suspect of he thought of lists, not totalities.
Much infinite mathematics can still be justified finitely [George/Velleman]
     Full Idea: It is possible to use finitary reasoning to justify a significant part of infinitary mathematics.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.8)
     A reaction: This might save Hilbert's project, by gradually accepting into the fold all the parts which have been giving a finitist justification.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
The intuitionists are the idealists of mathematics [George/Velleman]
     Full Idea: The intuitionists are the idealists of mathematics.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
Gödel's First Theorem suggests there are truths which are independent of proof [George/Velleman]
     Full Idea: For intuitionists, truth is not independent of proof, but this independence is precisely what seems to be suggested by Gödel's First Incompleteness Theorem.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.8)
     A reaction: Thus Gödel was worse news for the Intuitionists than he was for Hilbert's Programme. Gödel himself responded by becoming a platonist about his unprovable truths.
7. Existence / A. Nature of Existence / 3. Being / h. Dasein (being human)
Being is revealed at the point between waking and sleep [Anon (Cent)]
     Full Idea: At the point of sleep when sleep has not yet come and external wakefulness vanishes, at this point being is revealed.
     From: Anon (Cent) (Centring [c.500 BCE], 50)
     A reaction: One for Heidegger. The problem with eastern philosophy is that no one expects that this revelation could be put into words, so we cannot compare our revelations of being, or pass them on to others. Which means they can't be criticised.
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / c. Empirical foundations
Basic propositions refer to a single experience, are incorrigible, and conclusively verifiable [Ayer]
     Full Idea: There is a class of empirical propositions, which I call 'basic propositions', which can be verified conclusively, since they refer solely to the contents of a single experience, which are incorrigible.
     From: A.J. Ayer (Introduction to 'Language Truth and Logic' [1946], p.13)
     A reaction: A classic statement of empirical foundationalism. I sort of agree that 'single experiences' are a 'given' for philosophy, but is questionable whether there is anything which could both be a single experience AND give rise to a proposition.
15. Nature of Minds / A. Nature of Mind / 4. Other Minds / a. Other minds
Neglect your self, and feel the consciousness of each other being [Anon (Cent)]
     Full Idea: Feel the consciousness of each person as your own consciousness. So, leaving aside concern for self, become each being.
     From: Anon (Cent) (Centring [c.500 BCE], 83)
     A reaction: Good. The western scepticism about other minds puts up a barrier to this sort of thought. The best of Zen is when it encourages the use of imagination to explore what is real. But imagination struggles to distinguish what is true.
15. Nature of Minds / A. Nature of Mind / 4. Other Minds / c. Knowing other minds
The argument from analogy fails, so the best account of other minds is behaviouristic [Ayer]
     Full Idea: There are too many objections to the argument from analogy, so I am inclined to revert to a 'behaviouristic' interpretation of propositions about other people's experiences.
     From: A.J. Ayer (Introduction to 'Language Truth and Logic' [1946], p.26)
     A reaction: It seems odd to vote for behaviourism on one issue, if you aren't a general subscriber. It is one thing to say that behaviour is the best evidence for your explanation, quite another to equate the other mind with its behaviour.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Corresponding to every concept there is a class (some of them sets) [George/Velleman]
     Full Idea: Corresponding to every concept there is a class (some classes will be sets, the others proper classes).
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
19. Language / A. Nature of Meaning / 5. Meaning as Verification
A statement is meaningful if observation statements can be deduced from it [Ayer]
     Full Idea: In the improved version, a statement was verifiable, and consequently meaningful, if 'some observation-statement can be deduced from it in conjunction with certain other premises, without being deducible from those other premises alone'.
     From: A.J. Ayer (Introduction to 'Language Truth and Logic' [1946], p.15)
     A reaction: I.Berlin showed that any statement S could pass this test, because if you assert 'S' and 'If S then O', these two statements entail O, which could be some random observation. Hence a 1946 revised version had to be produced.
Directly verifiable statements must entail at least one new observation statement [Ayer]
     Full Idea: A statement is directly verifiable if it is either itself an observation-statement,or is such that in conjunction with one or more observation-statements it entails at least one observation-statement which is not deducible from these other premises alone.
     From: A.J. Ayer (Introduction to 'Language Truth and Logic' [1946], p.17)
     A reaction: This is the 1946 revised version of the Verification Principle, which was then torpedoed by an elaborate counterexample from Alonzo Church. Ayer thereafter abandoned attempts to find a precise statement of it.
The principle of verification is not an empirical hypothesis, but a definition [Ayer]
     Full Idea: I wish the principle of verification to be regarded, not as an empirical hypothesis, but as a definition.
     From: A.J. Ayer (Introduction to 'Language Truth and Logic' [1946], p.21)
     A reaction: This is Ayer's attempt to meet the well known objection of 'turning the tables' on his theory (by asking whether it is tautological or empirically verifiable). However, if it is just a definition, then presumably it is completely arbitrary…
19. Language / D. Propositions / 1. Propositions
Sentences only express propositions if they are meaningful; otherwise they are 'statements' [Ayer]
     Full Idea: I suggest that every grammatically significant indicative sentence expresses a 'statement', but the word 'proposition' will be reserved for what is expressed by sentences that are literally meaningful.
     From: A.J. Ayer (Introduction to 'Language Truth and Logic' [1946], p.10)
     A reaction: We don't have to accept Ayer's over-fussy requirements for what is meaningful to accept that this is a good distinction. Every day we hear statements from people (e.g. politicians) in which we can fish in vain for the underlying proposition.
20. Action / B. Preliminaries of Action / 2. Willed Action / a. Will to Act
Just as you have the impulse to do something, stop [Anon (Cent)]
     Full Idea: Just as you have the impulse to do something, stop.
     From: Anon (Cent) (Centring [c.500 BCE], 64)
     A reaction: Nice. You might train your own will like a dog in this way. It is a counterexample to the simplistic idea that all you need is a belief and a desire, and you have got an action. But (pace Searle, Ideas 3817 + 3818) this does not prove free will.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / i. Prescriptivism
Moral approval and disapproval concerns classes of actions, rather than particular actions [Ayer]
     Full Idea: The common objects of moral approval and disapproval are not particular actions so much as classes of actions.
     From: A.J. Ayer (Introduction to 'Language Truth and Logic' [1946], p.27)
     A reaction: This 1946 revision of his pure emotivism looks like a move towards Hare's prescriptivism, where classes, rules and principles are seen as the window-dressing of emotivism. It's still a bad theory.
25. Social Practice / A. Freedoms / 5. Freedom of lifestyle
Bondage and liberation are relative terms, which only frighten those already terrified of the universe [Anon (Cent)]
     Full Idea: Since in truth, bondage and freedom are relative, these words are only for those terrified with the universe. The universe is a reflection of minds. As you see many suns in water from one sun, so see bondage and liberation.
     From: Anon (Cent) (Centring [c.500 BCE], 110)
     A reaction: Since most easterners have experienced permanent social repression, their philosophies all encourage them not to worry about it. No wonder marxism, proved popular, when it suggested you could actually change things.
29. Religion / C. Spiritual Disciplines / 4. Zen Buddhism
Feel your whole body saturated with cosmic essence [Anon (Cent)]
     Full Idea: Feel your substance, bones, flesh, blood, saturated with cosmic essence.
     From: Anon (Cent) (Centring [c.500 BCE], 23)
     A reaction: I find this unsatisfactory. Being a sad victim of materialistic western scientific culture, I don't think 'cosmic essence' exists. I could imagine myself full of the stuff, and that might feel good, but I could also imagine I had won the lottery.
Abandon attachment to body, and feel the joy of being everywhere [Anon (Cent)]
     Full Idea: Toss attachment for body aside, realising I am everywhere. One who is everywhere is joyous.
     From: Anon (Cent) (Centring [c.500 BCE], 79)
     A reaction: I really don't think it is wisdom to spend your time imagining things which are not true. I might imagine that some gorgeous film star is in love with me, but I don't recommend it. Live according to nature. We are physical beings.
The serenity in blue sky beyond clouds [Anon (Cent)]
     Full Idea: Simply by looking into blue sky beyond clouds - the serenity.
     From: Anon (Cent) (Centring [c.500 BCE], 59)
     A reaction: Philip Larkin finds the same experience looking through high windows. If we articulate the experience, it seems to combine humility and detachment. The sky makes us insignificant, but the mind can project into the sky.
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
Imagine fire burning up your whole body, but not you [Anon (Cent)]
     Full Idea: Focus on fire rising through your form from the toes up until the body burns to ashes, but not you.
     From: Anon (Cent) (Centring [c.500 BCE], 28)
     A reaction: Try very hard to persuade yourself that you are immortal, even if you are not. Hm. Zen Buddhism actually contains very little commitment to what is true or false. It explores interesting beliefs like children playing with toys. Very post-modern.