Combining Texts

All the ideas for 'Introduction to 'Language Truth and Logic'', 'Centring' and 'What Required for Foundation for Maths?'

unexpand these ideas     |    start again     |     specify just one area for these texts


46 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
     Full Idea: Definition provides us with the means for converting our intuitions into mathematically usable concepts.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
     Full Idea: When you have proved something you know not only that it is true, but why it must be true.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
     A reaction: Note the word 'must'. Presumably both the grounding and the necessitation of the truth are revealed.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
     Full Idea: The idea of 'generating' sets is only a metaphor - the existence of the hierarchy is established without appealing to such dubious notions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
     A reaction: Presumably there can be a 'dependence' or 'determination' relation which does not involve actual generation.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
     Full Idea: Our very notion of a set is that of an extensional plurality limited in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
     Full Idea: In the mainstream tradition of modern logic, beginning with Boole, Peirce and Schröder, descending through Löwenheim and Skolem to reach maturity with Tarski and his school ...saw logic as a branch of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-1)
     A reaction: [The lesser tradition, of Frege and Russell, says mathematics is a branch of logic]. Mayberry says the Fregean tradition 'has almost died out'.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
     Full Idea: First-order logic is very weak, but therein lies its strength. Its principle tools (Compactness, Completeness, Löwenheim-Skolem Theorems) can be established only because it is too weak to axiomatize either arithmetic or analysis.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.411-2)
     A reaction: He adds the proviso that this is 'unless we are dealing with structures on whose size we have placed an explicit, finite bound' (p.412-1).
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
     Full Idea: Second-order logic is a powerful tool of definition: by means of it alone we can capture mathematical structure up to isomorphism using simple axiom systems.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
     Full Idea: The 'logica magna' [of the Fregean tradition] has quantifiers ranging over a fixed domain, namely everything there is. In the Boolean tradition the domains differ from interpretation to interpretation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-2)
     A reaction: Modal logic displays both approaches, with different systems for global and local domains.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
     Full Idea: No logic which can axiomatize real analysis can have the Löwenheim-Skolem property.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
     Full Idea: The central dogma of the axiomatic method is this: isomorphic structures are mathematically indistinguishable in their essential properties.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
     A reaction: Hence it is not that we have to settle for the success of a system 'up to isomorphism', since that was the original aim. The structures must differ in their non-essential properties, or they would be the same system.
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
     Full Idea: The purpose of a 'classificatory' axiomatic theory is to single out an otherwise disparate species of structures by fixing certain features of morphology. ...The aim is to single out common features.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
     Full Idea: The purpose of what I am calling 'eliminatory' axiomatic theories is precisely to eliminate from mathematics those peculiar ideal and abstract objects that, on the traditional view, constitute its subject matter.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-1)
     A reaction: A very interesting idea. I have a natural antipathy to 'abstract objects', because they really mess up what could otherwise be a very tidy ontology. What he describes might be better called 'ignoring' axioms. The objects may 'exist', but who cares?
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
     Full Idea: No logic which can axiomatise arithmetic can be compact or complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
     A reaction: I take this to be because there are new truths in the transfinite level (as well as the problem of incompleteness).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
     Full Idea: Quantities for Greeks were concrete things - lines, surfaces, solids, times, weights. At the centre of their science of quantity was the beautiful theory of ratio and proportion (...in which the notion of number does not appear!).
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
     A reaction: [He credits Eudoxus, and cites Book V of Euclid]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
     Full Idea: The abstract objects of modern mathematics, the real numbers, were invented by the mathematicians of the seventeenth century in order to simplify and to generalize the Greek science of quantity.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
     Full Idea: In Cantor's new vision, the infinite, the genuine infinite, does not disappear, but presents itself in the guise of the absolute, as manifested in the species of all sets or the species of all ordinal numbers.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
     Full Idea: We may describe Cantor's achievement by saying, not that he tamed the infinite, but that he extended the finite.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
     Full Idea: If we grant, as surely we must, the central importance of proof and definition, then we must also grant that mathematics not only needs, but in fact has, foundations.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
     Full Idea: The ultimate principles upon which mathematics rests are those to which mathematicians appeal without proof; and the primitive concepts of mathematics ...themselves are grasped directly, if grasped at all, without the mediation of definition.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
     A reaction: This begs the question of whether the 'grasping' is purely a priori, or whether it derives from experience. I defend the latter, and Jenkins puts the case well.
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
     Full Idea: An account of the foundations of mathematics must specify four things: the primitive concepts for use in definitions, the rules governing definitions, the ultimate premises of proofs, and rules allowing advance from premises to conclusions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
     Full Idea: No axiomatic theory, formal or informal, of first or of higher order can logically play a foundational role in mathematics. ...It is obvious that you cannot use the axiomatic method to explain what the axiomatic method is.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
     Full Idea: The sole theoretical interest of first-order Peano arithmetic derives from the fact that it is a first-order reduct of a categorical second-order theory. Its axioms can be proved incomplete only because the second-order theory is categorical.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
     Full Idea: If we did not know that the second-order axioms characterise the natural numbers up to isomorphism, we should have no reason to suppose, a priori, that first-order Peano Arithmetic should be complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
     Full Idea: The idea that set theory must simply be identified with first-order Zermelo-Fraenkel is surprisingly widespread. ...The first-order axiomatic theory of sets is clearly inadequate as a foundation of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-2)
     A reaction: [He is agreeing with a quotation from Skolem].
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
     Full Idea: One does not have to translate 'ordinary' mathematics into the Zermelo-Fraenkel system: ordinary mathematics comes embodied in that system.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-1)
     A reaction: Mayberry seems to be a particular fan of set theory as spelling out the underlying facts of mathematics, though it has to be second-order.
Set theory is not just another axiomatised part of mathematics [Mayberry]
     Full Idea: The fons et origo of all confusion is the view that set theory is just another axiomatic theory and the universe of sets just another mathematical structure. ...The universe of sets ...is the world that all mathematical structures inhabit.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.416-1)
7. Existence / A. Nature of Existence / 3. Being / h. Dasein (being human)
Being is revealed at the point between waking and sleep [Anon (Cent)]
     Full Idea: At the point of sleep when sleep has not yet come and external wakefulness vanishes, at this point being is revealed.
     From: Anon (Cent) (Centring [c.500 BCE], 50)
     A reaction: One for Heidegger. The problem with eastern philosophy is that no one expects that this revelation could be put into words, so we cannot compare our revelations of being, or pass them on to others. Which means they can't be criticised.
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
     Full Idea: The abstractness of the old fashioned real numbers has been replaced by generality in the modern theory of complete ordered fields.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: In philosophy, I'm increasingly thinking that we should talk much more of 'generality', and a great deal less about 'universals'. (By which I don't mean that redness is just the set of red things).
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / c. Empirical foundations
Basic propositions refer to a single experience, are incorrigible, and conclusively verifiable [Ayer]
     Full Idea: There is a class of empirical propositions, which I call 'basic propositions', which can be verified conclusively, since they refer solely to the contents of a single experience, which are incorrigible.
     From: A.J. Ayer (Introduction to 'Language Truth and Logic' [1946], p.13)
     A reaction: A classic statement of empirical foundationalism. I sort of agree that 'single experiences' are a 'given' for philosophy, but is questionable whether there is anything which could both be a single experience AND give rise to a proposition.
15. Nature of Minds / A. Nature of Mind / 4. Other Minds / a. Other minds
Neglect your self, and feel the consciousness of each other being [Anon (Cent)]
     Full Idea: Feel the consciousness of each person as your own consciousness. So, leaving aside concern for self, become each being.
     From: Anon (Cent) (Centring [c.500 BCE], 83)
     A reaction: Good. The western scepticism about other minds puts up a barrier to this sort of thought. The best of Zen is when it encourages the use of imagination to explore what is real. But imagination struggles to distinguish what is true.
15. Nature of Minds / A. Nature of Mind / 4. Other Minds / c. Knowing other minds
The argument from analogy fails, so the best account of other minds is behaviouristic [Ayer]
     Full Idea: There are too many objections to the argument from analogy, so I am inclined to revert to a 'behaviouristic' interpretation of propositions about other people's experiences.
     From: A.J. Ayer (Introduction to 'Language Truth and Logic' [1946], p.26)
     A reaction: It seems odd to vote for behaviourism on one issue, if you aren't a general subscriber. It is one thing to say that behaviour is the best evidence for your explanation, quite another to equate the other mind with its behaviour.
19. Language / A. Nature of Meaning / 5. Meaning as Verification
A statement is meaningful if observation statements can be deduced from it [Ayer]
     Full Idea: In the improved version, a statement was verifiable, and consequently meaningful, if 'some observation-statement can be deduced from it in conjunction with certain other premises, without being deducible from those other premises alone'.
     From: A.J. Ayer (Introduction to 'Language Truth and Logic' [1946], p.15)
     A reaction: I.Berlin showed that any statement S could pass this test, because if you assert 'S' and 'If S then O', these two statements entail O, which could be some random observation. Hence a 1946 revised version had to be produced.
Directly verifiable statements must entail at least one new observation statement [Ayer]
     Full Idea: A statement is directly verifiable if it is either itself an observation-statement,or is such that in conjunction with one or more observation-statements it entails at least one observation-statement which is not deducible from these other premises alone.
     From: A.J. Ayer (Introduction to 'Language Truth and Logic' [1946], p.17)
     A reaction: This is the 1946 revised version of the Verification Principle, which was then torpedoed by an elaborate counterexample from Alonzo Church. Ayer thereafter abandoned attempts to find a precise statement of it.
The principle of verification is not an empirical hypothesis, but a definition [Ayer]
     Full Idea: I wish the principle of verification to be regarded, not as an empirical hypothesis, but as a definition.
     From: A.J. Ayer (Introduction to 'Language Truth and Logic' [1946], p.21)
     A reaction: This is Ayer's attempt to meet the well known objection of 'turning the tables' on his theory (by asking whether it is tautological or empirically verifiable). However, if it is just a definition, then presumably it is completely arbitrary…
19. Language / D. Propositions / 1. Propositions
Sentences only express propositions if they are meaningful; otherwise they are 'statements' [Ayer]
     Full Idea: I suggest that every grammatically significant indicative sentence expresses a 'statement', but the word 'proposition' will be reserved for what is expressed by sentences that are literally meaningful.
     From: A.J. Ayer (Introduction to 'Language Truth and Logic' [1946], p.10)
     A reaction: We don't have to accept Ayer's over-fussy requirements for what is meaningful to accept that this is a good distinction. Every day we hear statements from people (e.g. politicians) in which we can fish in vain for the underlying proposition.
20. Action / B. Preliminaries of Action / 2. Willed Action / a. Will to Act
Just as you have the impulse to do something, stop [Anon (Cent)]
     Full Idea: Just as you have the impulse to do something, stop.
     From: Anon (Cent) (Centring [c.500 BCE], 64)
     A reaction: Nice. You might train your own will like a dog in this way. It is a counterexample to the simplistic idea that all you need is a belief and a desire, and you have got an action. But (pace Searle, Ideas 3817 + 3818) this does not prove free will.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / i. Prescriptivism
Moral approval and disapproval concerns classes of actions, rather than particular actions [Ayer]
     Full Idea: The common objects of moral approval and disapproval are not particular actions so much as classes of actions.
     From: A.J. Ayer (Introduction to 'Language Truth and Logic' [1946], p.27)
     A reaction: This 1946 revision of his pure emotivism looks like a move towards Hare's prescriptivism, where classes, rules and principles are seen as the window-dressing of emotivism. It's still a bad theory.
25. Social Practice / A. Freedoms / 5. Freedom of lifestyle
Bondage and liberation are relative terms, which only frighten those already terrified of the universe [Anon (Cent)]
     Full Idea: Since in truth, bondage and freedom are relative, these words are only for those terrified with the universe. The universe is a reflection of minds. As you see many suns in water from one sun, so see bondage and liberation.
     From: Anon (Cent) (Centring [c.500 BCE], 110)
     A reaction: Since most easterners have experienced permanent social repression, their philosophies all encourage them not to worry about it. No wonder marxism, proved popular, when it suggested you could actually change things.
29. Religion / C. Spiritual Disciplines / 4. Zen Buddhism
The serenity in blue sky beyond clouds [Anon (Cent)]
     Full Idea: Simply by looking into blue sky beyond clouds - the serenity.
     From: Anon (Cent) (Centring [c.500 BCE], 59)
     A reaction: Philip Larkin finds the same experience looking through high windows. If we articulate the experience, it seems to combine humility and detachment. The sky makes us insignificant, but the mind can project into the sky.
Abandon attachment to body, and feel the joy of being everywhere [Anon (Cent)]
     Full Idea: Toss attachment for body aside, realising I am everywhere. One who is everywhere is joyous.
     From: Anon (Cent) (Centring [c.500 BCE], 79)
     A reaction: I really don't think it is wisdom to spend your time imagining things which are not true. I might imagine that some gorgeous film star is in love with me, but I don't recommend it. Live according to nature. We are physical beings.
Feel your whole body saturated with cosmic essence [Anon (Cent)]
     Full Idea: Feel your substance, bones, flesh, blood, saturated with cosmic essence.
     From: Anon (Cent) (Centring [c.500 BCE], 23)
     A reaction: I find this unsatisfactory. Being a sad victim of materialistic western scientific culture, I don't think 'cosmic essence' exists. I could imagine myself full of the stuff, and that might feel good, but I could also imagine I had won the lottery.
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
Imagine fire burning up your whole body, but not you [Anon (Cent)]
     Full Idea: Focus on fire rising through your form from the toes up until the body burns to ashes, but not you.
     From: Anon (Cent) (Centring [c.500 BCE], 28)
     A reaction: Try very hard to persuade yourself that you are immortal, even if you are not. Hm. Zen Buddhism actually contains very little commitment to what is true or false. It explores interesting beliefs like children playing with toys. Very post-modern.