Combining Texts

All the ideas for 'The Evolution of Modern Metaphysics', 'Set Theory' and 'Croce and Collingwood'

unexpand these ideas     |    start again     |     specify just one area for these texts


17 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
Metaphysics is the most general attempt to make sense of things [Moore,AW]
     Full Idea: Metaphysics is the most general attempt to make sense of things.
     From: A.W. Moore (The Evolution of Modern Metaphysics [2012], Intro)
     A reaction: This is the first sentence of Moore's book, and a touchstone idea all the way through. It stands up well, because it says enough without committing to too much. I have to agree with it. It implies explanation as the key. I like generality too.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Appearances are nothing beyond representations, which is transcendental ideality [Moore,AW]
     Full Idea: Appearances in general are nothing outside our representations, which is just what we mean by transcendental ideality.
     From: A.W. Moore (The Evolution of Modern Metaphysics [2012], B535/A507)
21. Aesthetics / A. Aesthetic Experience / 1. Aesthetics
By 1790 aestheticians were mainly trying to explain individual artistic genius [Kemp]
     Full Idea: By 1790 the idea that a central task for the aesthetician was to explain or at least adequately to describe the phenomenon of the individual artistic genius had definitely taken hold.
     From: Gary Kemp (Croce and Collingwood [2012], Intro)
     A reaction: Hence when Kant and Hegel write about art, though are only really thinking of the greatest art (which might be in touch with the sublime or Spirit etc.). Nowadays I think we expect accounts of art to cover modest amateur efforts as well.
21. Aesthetics / B. Nature of Art / 4. Art as Expression
Expression can be either necessary for art, or sufficient for art (or even both) [Kemp]
     Full Idea: Seeing art as expression has two components: 1) if something is a work of art, then it is expressive, 2) if something is expressive, then it is a work of art. So expression can be necessary or sufficient for art. (or both, for Croce and Collingwood).
     From: Gary Kemp (Croce and Collingwood [2012], 1)
     A reaction: I take the idea that art 'expresses' the feelings of an artist to be false. Artists are more like actors. Nearly all art has some emotional impact, which is of major importance, but I don't think 'expression' is a very good word for that.
We don't already know what to express, and then seek means of expressing it [Kemp]
     Full Idea: One cannot really know, or be conscious of, what it is that one is going to express, and then set about expressing it; indeed if one is genuinely conscious of it then one has already expressed it.
     From: Gary Kemp (Croce and Collingwood [2012], 1)
     A reaction: That pretty conclusively demolishes the idea that art is expression. I picture Schubert composing at the piano: he doesn't feel an emotion, and then hunt for its expression on the keyboard; he seeks out expressive phrases by playing.
The horror expressed in some works of art could equallly be expressed by other means [Kemp]
     Full Idea: The horror or terror of Edvard Much's 'The Scream' could in principle be expressed by different paintings, or even by works of music.
     From: Gary Kemp (Croce and Collingwood [2012], 1)
     A reaction: A very good simple point against the idea that the point of art is expression. It leaves out the very specific nature of each work of art!