Combining Texts

All the ideas for 'The Evolution of Modern Metaphysics', 'Set Theory' and 'First-Order Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


21 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
Metaphysics is the most general attempt to make sense of things [Moore,AW]
     Full Idea: Metaphysics is the most general attempt to make sense of things.
     From: A.W. Moore (The Evolution of Modern Metaphysics [2012], Intro)
     A reaction: This is the first sentence of Moore's book, and a touchstone idea all the way through. It stands up well, because it says enough without committing to too much. I have to agree with it. It implies explanation as the key. I like generality too.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is the study of sound argument, or of certain artificial languages (or applying the latter to the former) [Hodges,W]
     Full Idea: A logic is a collection of closely related artificial languages, and its older meaning is the study of the rules of sound argument. The languages can be used as a framework for studying rules of argument.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.1)
     A reaction: [Hodges then says he will stick to the languages] The suspicion is that one might confine the subject to the artificial languages simply because it is easier, and avoids the tricky philosophical questions. That approximates to computer programming.
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
A formula needs an 'interpretation' of its constants, and a 'valuation' of its variables [Hodges,W]
     Full Idea: To have a truth-value, a first-order formula needs an 'interpretation' (I) of its constants, and a 'valuation' (ν) of its variables. Something in the world is attached to the constants; objects are attached to variables.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.3)
There are three different standard presentations of semantics [Hodges,W]
     Full Idea: Semantic rules can be presented in 'Tarski style', where the interpretation-plus-valuation is reduced to the same question for simpler formulas, or the 'Henkin-Hintikka style' in terms of games, or the 'Barwise-Etchemendy style' for computers.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.3)
     A reaction: I haven't yet got the hang of the latter two, but I note them to map the territory.
I |= φ means that the formula φ is true in the interpretation I [Hodges,W]
     Full Idea: I |= φ means that the formula φ is true in the interpretation I.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.5)
     A reaction: [There should be no space between the vertical and the two horizontals!] This contrasts with |-, which means 'is proved in'. That is a syntactic or proof-theoretic symbol, whereas |= is a semantic symbol (involving truth).
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Down Löwenheim-Skolem: if a countable language has a consistent theory, that has a countable model [Hodges,W]
     Full Idea: Downward Löwenheim-Skolem (the weakest form): If L is a first-order language with at most countably many formulas, and T is a consistent theory in L. Then T has a model with at most countably many elements.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.10)
Up Löwenheim-Skolem: if infinite models, then arbitrarily large models [Hodges,W]
     Full Idea: Upward Löwenheim-Skolem: every first-order theory with infinite models has arbitrarily large models.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.10)
5. Theory of Logic / K. Features of Logics / 6. Compactness
If a first-order theory entails a sentence, there is a finite subset of the theory which entails it [Hodges,W]
     Full Idea: Compactness Theorem: suppose T is a first-order theory, ψ is a first-order sentence, and T entails ψ. Then there is a finite subset U of T such that U entails ψ.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.10)
     A reaction: If entailment is possible, it can be done finitely.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
A 'set' is a mathematically well-behaved class [Hodges,W]
     Full Idea: A 'set' is a mathematically well-behaved class.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.6)
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Appearances are nothing beyond representations, which is transcendental ideality [Moore,AW]
     Full Idea: Appearances in general are nothing outside our representations, which is just what we mean by transcendental ideality.
     From: A.W. Moore (The Evolution of Modern Metaphysics [2012], B535/A507)