Combining Texts

All the ideas for 'The Evolution of Modern Metaphysics', 'First-Order Modal Logic' and 'Perception'

unexpand these ideas     |    start again     |     specify just one area for these texts


72 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
Metaphysics is the most general attempt to make sense of things [Moore,AW]
     Full Idea: Metaphysics is the most general attempt to make sense of things.
     From: A.W. Moore (The Evolution of Modern Metaphysics [2012], Intro)
     A reaction: This is the first sentence of Moore's book, and a touchstone idea all the way through. It stands up well, because it says enough without committing to too much. I have to agree with it. It implies explanation as the key. I like generality too.
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
     Full Idea: Each line of a truth table is, in effect, a model.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
     A reaction: I find this comment illuminating. It is being connected with the more complex models of modal logic. Each line of a truth table is a picture of how the world might be.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
     Full Idea: For modal logic we add to the syntax of classical logic two new unary operators □ (necessarily) and ◊ (possibly).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.3)
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: We let 'R' be the accessibility relation: xRy is read 'y is accessible from x'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
     Full Idea: The symbol ||- is used for the 'forcing' relation, as in 'Γ ||- P', which means that P is true in world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
     Full Idea: A 'prefix' is a finite sequence of positive integers. A 'prefixed formula' is an expression of the form σ X, where σ is a prefix and X is a formula. A prefix names a possible world, and σ.n names a world accessible from that one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
     Full Idea: In 'constant domain' semantics, the domain of each possible world is the same as every other; in 'varying domain' semantics, the domains need not coincide, or even overlap.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: Modern modal logic takes into consideration the way the modal relates the possible worlds, called the 'accessibility' relation. .. We let R be the accessibility relation, and xRy reads as 'y is accessible from x.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
     A reaction: There are various types of accessibility, and these define the various modal logics.
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
     Full Idea: A 'model' is a frame plus a specification of which propositional letters are true at which worlds. It is written as , where ||- is a relation between possible worlds and propositional letters. So Γ ||- P means P is true at world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
     Full Idea: A 'frame' consists of a non-empty set G, whose members are generally called possible worlds, and a binary relation R, on G, generally called the accessibility relation. We say the frame is the pair so that a single object can be talked about.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
     Full Idea: A relation R is 'reflexive' if every world is accessible from itself; 'transitive' if the first world is related to the third world (ΓRΔ and ΔRΩ → ΓRΩ); and 'symmetric' if the accessibility relation is mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.7)
     A reaction: The different systems of modal logic largely depend on how these accessibility relations are specified. There is also the 'serial' relation, which just says that any world has another world accessible to it.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
     Full Idea: General tableau rule for negation: if σ ¬¬X then σ X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for disjunctions: a) if σ ¬(X ∨ Y) then σ ¬X and σ ¬Y b) if σ X ∨ Y then σ X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for existential modality: a) if σ ◊ X then σ.n X b) if σ ¬□ X then σ.n ¬X , where n introduces some new world (rather than referring to a world that can be seen).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the existential rule of ◊, usually read as 'possibly', asserts something about a new as yet unseen world, whereas □ only refers to worlds which can already be seen,
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
     Full Idea: System T reflexive rules (also for B, S4, S5): a) if σ □X then σ X b) if σ ¬◊X then σ ¬X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
     Full Idea: System D serial rules (also for T, B, S4, S5): a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System B symmetric rules (also for S5): a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4 transitive rules (also for K4, S4, S5): a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4r reversed-transitive rules (also for S5): a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is possibly true in a world, then it is also true in some world which is accessible from that world. That is: Γ ||- ◊X ↔ for some Δ ∈ G, ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is necessarily true in a world, then it is also true in all worlds which are accessible from that world. That is: Γ ||- □X ↔ for every Δ ∈ G, if ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for conjunctions: a) if σ X ∧ Y then σ X and σ Y b) if σ ¬(X ∧ Y) then σ ¬X or σ ¬Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for biconditionals: a) if σ (X ↔ Y) then σ (X → Y) and σ (Y → X) b) if σ ¬(X ↔ Y) then σ ¬(X → Y) or σ ¬(Y → X)
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for implications: a) if σ ¬(X → Y) then σ X and σ ¬Y b) if σ X → Y then σ ¬X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for universal modality: a) if σ ¬◊ X then σ.m ¬X b) if σ □ X then σ.m X , where m refers to a world that can be seen (rather than introducing a new world).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the universal rule of □, usually read as 'necessary', only refers to worlds which can already be seen, whereas possibility (◊) asserts some thing about a new as yet unseen world.
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
     Full Idea: Simplified S5 rules: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X. 'n' picks any world; in a) and b) 'k' asserts a new world; in c) and d) 'k' refers to a known world
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
     Full Idea: The system K has no frame conditions imposed on its accessibility relation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: The system is named K in honour of Saul Kripke.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
     Full Idea: System D is usually thought of as Deontic Logic, concerning obligations and permissions. □P → P is not valid in D, since just because an action is obligatory, it does not follow that it is performed.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.12.2 Ex)
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system D has the 'serial' condition imposed on its accessibility relation - that is, every world must have some world which is accessible to it.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system T has the 'reflexive' condition imposed on its accessibility relation - that is, every world must be accessible to itself.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system K4 has the 'transitive' condition imposed on its accessibility relation - that is, if a relation holds between worlds 1 and 2 and worlds 2 and 3, it must hold between worlds 1 and 3. The relation carries over.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system B has the 'reflexive' and 'symmetric' conditions imposed on its accessibility relation - that is, every world must be accessible to itself, and any relation between worlds must be mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S4 has the 'reflexive' and 'transitive' conditions imposed on its accessibility relation - that is, every world is accessible to itself, and accessibility carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S5 has the 'reflexive', 'symmetric' and 'transitive' conditions imposed on its accessibility relation - that is, every world is self-accessible, and accessibility is mutual, and it carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: S5 has total accessibility, and hence is the most powerful system (though it might be too powerful).
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
     Full Idea: P→◊P is usually considered to be valid, but its converse, ◊P→P is not, so (by Frege's own criterion) P and possibly-P differ in conceptual content, and there is no reason why logic should not be widened to accommodate this.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.2)
     A reaction: Frege had denied that modality affected the content of a proposition (1879:p.4). The observation here is the foundation for the need for a modal logic.
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
     Full Idea: In epistemic logic the knower is treated as logically omniscient. This is puzzling because one then cannot know something and yet fail to know that one knows it (the Principle of Positive Introspection).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: This is nowadays known as the K-K Problem - to know, must you know that you know. Broadly, we find that externalists say you don't need to know that you know (so animals know things), but internalists say you do need to know that you know.
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
     Full Idea: In epistemic logic we read Υ as 'KaP: a knows that P', and ◊ as 'PaP: it is possible, for all a knows, that P' (a is an individual). For belief we read them as 'BaP: a believes that P' and 'CaP: compatible with everything a believes that P'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: [scripted capitals and subscripts are involved] Hintikka 1962 is the source of this. Fitting and Mendelsohn prefer □ to read 'a is entitled to know P', rather than 'a knows that P'.
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
     Full Idea: We introduce four future and past tense operators: FP: it will sometime be the case that P. PP: it was sometime the case that P. GP: it will always be the case that P. HP: it has always been the case that P. (P itself is untensed).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.10)
     A reaction: Temporal logic begins with A.N. Prior, and starts with □ as 'always', and ◊ as 'sometimes', but then adds these past and future divisions. Two different logics emerge, taking □ and ◊ as either past or as future.
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
     Full Idea: The Converse Barcan says nothing passes out of existence in alternative situations. The Barcan says that nothing comes into existence. The two together say the same things exist no matter what the situation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.9)
     A reaction: I take the big problem to be that these reflect what it is you want to say, and that does not keep stable across a conversation, so ordinary rational discussion sometimes asserts these formulas, and 30 seconds later denies them.
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
     Full Idea: The Barcan formula corresponds to anti-monotonicity, and the Converse Barcan formula corresponds to monotonicity.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 6.3)
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
     Full Idea: 'Predicate abstraction' is a key idea. It is a syntactic mechanism for abstracting a predicate from a formula, providing a scoping mechanism for constants and function symbols similar to that provided for variables by quantifiers.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], Pref)
7. Existence / D. Theories of Reality / 6. Physicalism
For physicalists, the only relations are spatial, temporal and causal [Robinson,H]
     Full Idea: Spatial, temporal and causal relations are the only respectable candidates for relations for a physicalist.
     From: Howard Robinson (Perception [1994], V.4)
     A reaction: This seems to be true, and is an absolutely crucial principle upon which any respectable physicalist account of the world must be built. It means that physicalists must attempt to explain all mental events in causal terms.
8. Modes of Existence / B. Properties / 6. Categorical Properties
If reality just has relational properties, what are its substantial ontological features? [Robinson,H]
     Full Idea: Some thinkers claim the physical world consists just of relational properties - generally of active powers or fields; ..but an ontology of mutual influences is not an ontology at all unless the possessors of the influence have more substantial features.
     From: Howard Robinson (Perception [1994], IX.3)
     A reaction: I think this idea is one of the keys to wisdom. It is the same problem with functional explanations - you are left asking WHY this thing can have this particular function. Without the buck stopping at essences you are chasing your explanatory tail.
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
     Full Idea: Equality has caused much grief for modal logic. Many of the problems, which have struck at the heart of the coherence of modal logic, stem from the apparent violations of the Indiscernibility of Identicals.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.1)
     A reaction: Thus when I say 'I might have been three inches taller', presumably I am referring to someone who is 'identical' to me, but who lacks one of my properties. A simple solution is to say that the person is 'essentially' identical.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
     Full Idea: If □ is to be sensitive to the quality of the truth of a proposition in its scope, then it must be sensitive as to whether an object is picked out by an essential property or by a contingent one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.3)
     A reaction: This incredibly simple idea strikes me as being powerful and important. ...However, creating illustrative examples leaves me in a state of confusion. You try it. They cite '9' and 'number of planets'. But is it just nominal essence? '9' must be 9.
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
     Full Idea: The property of 'possibly being a Republican' is as much a property of Bill Clinton as is 'being a democrat'. So we don't peel off his properties from world to world. Hence the bundle theory fits our treatment of objects better than bare particulars.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.3)
     A reaction: This bundle theory is better described in recent parlance as the 'modal profile'. I am reluctant to talk of a modal truth about something as one of its 'properties'. An objects, then, is a bundle of truths?
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
     Full Idea: The main technical problem with counterpart theory is that the being-a-counterpart relation is, in general, neither symmetric nor transitive, so no natural logic of equality is forthcoming.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
     A reaction: That is, nothing is equal to a counterpart, either directly or indirectly.
11. Knowledge Aims / C. Knowing Reality / 1. Perceptual Realism / a. Naïve realism
When a red object is viewed, the air in between does not become red [Robinson,H]
     Full Idea: When the form of red passes from an object to the eye, the air in between does not become red.
     From: Howard Robinson (Perception [1994], 1.2)
     A reaction: This strikes me as a crucial and basic fact which must be faced by any philosopher offering a theory of perception. I would have thought it instantly eliminated any sort of direct or naïve realism. The quale of red is created by my brain.
11. Knowledge Aims / C. Knowing Reality / 1. Perceptual Realism / c. Representative realism
Representative realists believe that laws of phenomena will apply to the physical world [Robinson,H]
     Full Idea: One thing which is meant by saying that the phenomenal world represents or resembles the transcendental physical world is that the scientific laws devised to apply to the former, if correct, also apply (at least approximately) to the latter.
     From: Howard Robinson (Perception [1994], IX.3)
     A reaction: This is not, of course, an argument, or a claim which can be easily substantiated, but it does seem to be a nice statement of a central article of faith for representative realists. The laws of the phenomenal world are the only ones we are going to get.
Representative realists believe some properties of sense-data are shared by the objects themselves [Robinson,H]
     Full Idea: A representative realist believes that at least some of the properties that are ostensively demonstrable in virtue of being exemplified in sense-data are of the same kind as some of those exemplified in physical objects.
     From: Howard Robinson (Perception [1994], VII.5)
     A reaction: It is hard to pin down exactly what is being claimed here. Locke's primary qualities will obviously qualify, but could properties be 'exemplified' in sense-data without them actually being the same as those of the objects?
11. Knowledge Aims / C. Knowing Reality / 2. Phenomenalism
Phenomenalism can be theistic (Berkeley), or sceptical (Hume), or analytic (20th century) [Robinson,H]
     Full Idea: It is useful to identify three kinds of phenomenalism: theistic, sceptical and analytic; the first is represented by Berkeley, the second by Hume, and the third by most twentieth-century phenomenalists.
     From: Howard Robinson (Perception [1994], IX.4)
     A reaction: In Britain the third group is usually represented by A.J.Ayer. My simple objection to all phenomenalists is that they are intellectual cowards because they won't venture to give an explanation of the phenomena which confront them.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Appearances are nothing beyond representations, which is transcendental ideality [Moore,AW]
     Full Idea: Appearances in general are nothing outside our representations, which is just what we mean by transcendental ideality.
     From: A.W. Moore (The Evolution of Modern Metaphysics [2012], B535/A507)
12. Knowledge Sources / B. Perception / 1. Perception
Can we reduce perception to acquisition of information, which is reduced to causation or disposition? [Robinson,H]
     Full Idea: Many modern physicalists first analyse perception as no more than the acquisition of beliefs or information through the senses, and then analyse belief and the possession of information in causal or dispositional terms.
     From: Howard Robinson (Perception [1994], V.1)
     A reaction: (He mentions Armstrong, Dretske and Pitcher). A reduction to dispositions implies behaviourism. This all sounds more like an eliminativist strategy than a reductive one. I would start by saying that perception is only information after interpretation.
Would someone who recovered their sight recognise felt shapes just by looking? [Robinson,H]
     Full Idea: Molyneux's Problem is whether someone who was born blind and acquired sight would be able to recognise, on sight, which shapes were which; that is, would they see which shape was the one that felt so-and-so?
     From: Howard Robinson (Perception [1994], VIII.7)
     A reaction: (Molyneux wrote a letter to John Locke about this). It is a good question, and much discussed in modern times. My estimation is that the person would recognise the shapes. We are partly synaesthetic, and see sharpness as well as feeling it.
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / b. Primary/secondary
Secondary qualities have one sensory mode, but primary qualities can have more [Robinson,H]
     Full Idea: Primary qualities and secondary qualities are often distinguished on the grounds that secondaries are restricted to one sensory modality, but primaries can appear in more.
     From: Howard Robinson (Perception [1994], VIII.7)
     A reaction: This distinction seems to me to be accurate and important. It is not just that the two types are phenomenally different - it is that the best explanation is that the secondaries depend on their one sense, but the primaries are independent.
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / c. Primary qualities
We say objects possess no intrinsic secondary qualities because physicists don't need them [Robinson,H]
     Full Idea: The idea that objects do not possess secondary qualities intrinsically rests on the thought that they do not figure in the physicist's account of the world; ..as they are causally idle, no purpose is served by attributing them to objects.
     From: Howard Robinson (Perception [1994], III.1)
     A reaction: On the whole I agree with this, but colours (for example) are not causally idle, as they seem to affect the behaviour of insects. They are properties which can only have a causal effect if there is a brain in their vicinity. Physicists ignore brains.
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / d. Secondary qualities
If objects are not coloured, and neither are sense-contents, we are left saying that nothing is coloured [Robinson,H]
     Full Idea: If there are good reasons for thinking that physical objects are not literally coloured, and one also refuses to attribute them to sense-contents, then one will have the bizarre theory (which has been recently adopted) that nothing is actually coloured.
     From: Howard Robinson (Perception [1994], 1.7)
     A reaction: It seems to me that objects are not literally coloured, that the air in between does not become coloured, and that my brain doesn't turn a funny colour, so that only leaves colour as an 'interior' feature of certain brain states. That's how it is.
Shape can be experienced in different ways, but colour and sound only one way [Robinson,H]
     Full Idea: Shape can be directly experienced by either touch or sight, which are subjectively different; but colour and sound can be directly experienced only through experiences which are subjectively like sight and hearing.
     From: Howard Robinson (Perception [1994], III.1)
     A reaction: This seems to be a key argument in support of the distinction between primary and secondary qualities. It seems to me that the distinction may be challenged and questioned, but to deny it completely (as Berkeley and Hume do) is absurd.
If secondary qualities match senses, would new senses create new qualities? [Robinson,H]
     Full Idea: As secondary qualities are tailored to match senses, a proliferation of senses would lead to a proliferation of secondary qualities.
     From: Howard Robinson (Perception [1994], III.1)
     A reaction: One might reply that if we experienced, say, magnetism, we would just be discerning a new fine grained primary quality, not adding something new to the ontological stock of properties in the world. It is a matter of HOW we experience the magnetism.
12. Knowledge Sources / B. Perception / 3. Representation
Most moderate empiricists adopt Locke's representative theory of perception [Robinson,H]
     Full Idea: The representative theory of perception is found in Locke, and is adopted by most moderate empiricists.
     From: Howard Robinson (Perception [1994], 1.2)
     A reaction: This is, I think, my own position. Anything less than fairly robust realism strikes me as being a bit mad (despite Berkeley's endless assertions that he is preaching common sense), and direct realism seems obviously false.
12. Knowledge Sources / B. Perception / 4. Sense Data / a. Sense-data theory
Sense-data leads to either representative realism or phenomenalism or idealism [Robinson,H]
     Full Idea: The sense-datum theorist is either a representative realist or a phenomenalist (with which we can classify idealism for present purposes).
     From: Howard Robinson (Perception [1994], VII.5)
     A reaction: The only alternative to these two positions seems to be some sort of direct realism. I class myself as a representative realist, as this just seems (after a very little thought about colour blindness) to be common sense. I'm open to persuasion.
12. Knowledge Sources / B. Perception / 4. Sense Data / b. Nature of sense-data
Sense-data do not have any intrinsic intentionality [Robinson,H]
     Full Idea: I understand sense-data as having no intrinsic intentionality; that is, though it may suggest, by habit, things beyond it, in itself it possesses only sensible qualities which do not refer beyond themselves.
     From: Howard Robinson (Perception [1994], 1.1)
     A reaction: This seems right, as the whole point of proposing sense-data was as something neutral between realism and anti-realism
For idealists and phenomenalists sense-data are in objects; representative realists say they resemble objects [Robinson,H]
     Full Idea: For idealists and phenomenalists sense-data are part of physical objects, for objects consist only of actual or actual and possible sense-data; representative realists say they just have an abstract and structural resemblance to objects.
     From: Howard Robinson (Perception [1994], 1.1)
     A reaction: He puts Berkeley, Hume and Mill in the first group, and Locke in the second. Russell belongs in the second. The very fact that there can be two such different theories about the location of sense-data rather discredits the whole idea.
12. Knowledge Sources / B. Perception / 4. Sense Data / d. Sense-data problems
Sense-data are rejected because they are a veil between us and reality, leading to scepticism [Robinson,H]
     Full Idea: Resistance to the sense-datum theory is inspired mainly by the fear that such data constitute a veil of perception which stands between the observer and the external world, threatening scepticism, or even solipsism.
     From: Howard Robinson (Perception [1994], VII.1)
     A reaction: It is very intellectually dishonest to reject any theory because it leads to scepticism or relativism. This is a common failing among quite good professional philosophers. See Idea 241.
12. Knowledge Sources / B. Perception / 8. Adverbial Theory
'Sense redly' sounds peculiar, but 'senses redly-squarely tablely' sounds far worse [Robinson,H]
     Full Idea: 'Sense redly' sounds peculiar, but 'senses redly-squarely' or 'red-squarely' or 'senses redly-squarely-tablely' and other variants sound far worse.
     From: Howard Robinson (Perception [1994], VII.5)
     A reaction: This is a comment on the adverbial theory, which is meant to replace representative theories based on sense-data. The problem is not that it sounds weird; it is that while plain red can be a mode of perception, being a table obviously can't.
Adverbialism sees the contents of sense-experience as modes, not objects [Robinson,H]
     Full Idea: The defining claim of adverbialism is that the contents of sense-experience are modes, not objects, of sensory activity.
     From: Howard Robinson (Perception [1994], VII.5)
     A reaction: This seems quite a good account of simple 'modes' like colour, but not so good when you instantly perceive a house. It never seems wholly satisfactory to sidestep the question of 'what are you perceiving when you perceive red or square?'
If there are only 'modes' of sensing, then an object can no more be red or square than it can be proud or lazy. [Robinson,H]
     Full Idea: If only modes of sensing are ostensively available, ..then it is a category mistake to see any resemblance between what is available and properties of bodies; one could as sensibly say that a physical body is proud or lazy as that it is red or square.
     From: Howard Robinson (Perception [1994], VII.5)
     A reaction: This is an objection to the 'adverbial' theory of perception. It looks to me like a devastating objection, if the theory is meant to cover primary qualities as well as secondary. Red could be a mode of perception, but not square, surely?
14. Science / D. Explanation / 1. Explanation / b. Aims of explanation
An explanation presupposes something that is improbable unless it is explained [Robinson,H]
     Full Idea: Any search for an explanation presupposes that there is something in need of an explanation - that is, something which is improbable unless explained.
     From: Howard Robinson (Perception [1994], IX.3)
     A reaction: Elementary enough, but it underlines the human perspective of all explanations. I may need an explanation of baseball, where you don't.
If all possibilities are equal, order seems (a priori) to need an explanation - or does it? [Robinson,H]
     Full Idea: The fact that order requires an explanation seems to be an a priori principle; ..we assume all possibilities are equally likely, and so no striking regularities should emerge; the sceptic replies that a highly ordered sequence is as likely as any other.
     From: Howard Robinson (Perception [1994], IX.3)
     A reaction: An independent notion of 'order' is required. If I write down '14356', and then throw 1 4 3 5 6 on a die, the match is the order; instrinsically 14356 is nothing special. If you threw the die a million times, a run of six sixes seems quite likely.
15. Nature of Minds / B. Features of Minds / 4. Intentionality / a. Nature of intentionality
If intentional states are intrinsically about other things, what are their own properties? [Robinson,H]
     Full Idea: Intentional states are mysterious things; if they are intrinsically about other things, what properties, if any, do they possess intrinsically?
     From: Howard Robinson (Perception [1994], 1.1)
     A reaction: A very nice question, which I suspect to be right at the heart of the tendency towards externalist accounts of the mind. Since you can only talk about the contents of the thoughts, you can't put forward a decent internalist account of what is going on.
17. Mind and Body / E. Mind as Physical / 1. Physical Mind
Physicalism cannot allow internal intentional objects, as brain states can't be 'about' anything [Robinson,H]
     Full Idea: It is generally conceded by reductive physicalists that a state of the brain cannot be intrinsically about anything, for intentionality is not an intrinsic property of anything, so there can be no internal objects for a physicalist.
     From: Howard Robinson (Perception [1994], V.4)
     A reaction: Perhaps it is best to say that 'aboutness' is not a property of physics. We may say that a brain state 'represents' something, because the something caused the brain state, but representations have to be recognised
26. Natural Theory / A. Speculations on Nature / 7. Later Matter Theories / c. Matter as extension
Locke's solidity is not matter, because that is impenetrability and hardness combined [Robinson,H]
     Full Idea: Notoriously, Locke's filler for Descartes's geometrical matter, solidity, will not do, for that quality collapses on examination into a composite of the dispositional-cum-relational propery of impenetrability, and the secondary quality of hardness.
     From: Howard Robinson (Perception [1994], IX.3)
     A reaction: I would have thought the problem was that 'matter is solidity' turns out on analysis to be a tautology. We have a handful of nearly synonymous words for matter and our experiences of it, but they boil down to some 'given' thing for which we lack words.