Combining Texts

All the ideas for 'The Evolution of Modern Metaphysics', 'First-Order Modal Logic' and 'The Rise of Analytic Philosophy 1879-1930'

unexpand these ideas     |    start again     |     specify just one area for these texts


63 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
Metaphysics is the most general attempt to make sense of things [Moore,AW]
     Full Idea: Metaphysics is the most general attempt to make sense of things.
     From: A.W. Moore (The Evolution of Modern Metaphysics [2012], Intro)
     A reaction: This is the first sentence of Moore's book, and a touchstone idea all the way through. It stands up well, because it says enough without committing to too much. I have to agree with it. It implies explanation as the key. I like generality too.
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions are circular, but fine for picking out, rather than creating something [Potter]
     Full Idea: The circularity in a definition where the property being defined is used in the definition is now known as 'impredicativity'. ...Some cases ('the tallest man in the room') are unproblematic, as they pick him out, and don't conjure him into existence.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 07 'Impred')
     A reaction: [part summary]
3. Truth / A. Truth Problems / 2. Defining Truth
The Identity Theory says a proposition is true if it coincides with what makes it true [Potter]
     Full Idea: The Identity Theory of truth says a proposition is true just in case it coincides with what makes it true.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 23 'Abs')
     A reaction: The obvious question is how 'there are trees in the wood' can somehow 'coincide with' or 'be identical to' the situation outside my window. The theory is sort of right, but we will never define the relationship, which is no better than 'corresponds'.
3. Truth / C. Correspondence Truth / 1. Correspondence Truth
It has been unfortunate that externalism about truth is equated with correspondence [Potter]
     Full Idea: There has been an unfortunate tendency in the secondary literature to equate externalism about truth with the correspondence theory.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 65 'Truth')
     A reaction: Quite helpful to distinguish internalist from externalist theories of truth. It is certainly the case that robust externalist views of truth have unfortunately been discredited merely because the correspondence account is inadequate.
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
     Full Idea: Each line of a truth table is, in effect, a model.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
     A reaction: I find this comment illuminating. It is being connected with the more complex models of modal logic. Each line of a truth table is a picture of how the world might be.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
     Full Idea: For modal logic we add to the syntax of classical logic two new unary operators □ (necessarily) and ◊ (possibly).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.3)
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: We let 'R' be the accessibility relation: xRy is read 'y is accessible from x'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
     Full Idea: The symbol ||- is used for the 'forcing' relation, as in 'Γ ||- P', which means that P is true in world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
     Full Idea: A 'prefix' is a finite sequence of positive integers. A 'prefixed formula' is an expression of the form σ X, where σ is a prefix and X is a formula. A prefix names a possible world, and σ.n names a world accessible from that one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
     Full Idea: In 'constant domain' semantics, the domain of each possible world is the same as every other; in 'varying domain' semantics, the domains need not coincide, or even overlap.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: Modern modal logic takes into consideration the way the modal relates the possible worlds, called the 'accessibility' relation. .. We let R be the accessibility relation, and xRy reads as 'y is accessible from x.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
     A reaction: There are various types of accessibility, and these define the various modal logics.
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
     Full Idea: A 'model' is a frame plus a specification of which propositional letters are true at which worlds. It is written as , where ||- is a relation between possible worlds and propositional letters. So Γ ||- P means P is true at world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
     Full Idea: A 'frame' consists of a non-empty set G, whose members are generally called possible worlds, and a binary relation R, on G, generally called the accessibility relation. We say the frame is the pair so that a single object can be talked about.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
     Full Idea: A relation R is 'reflexive' if every world is accessible from itself; 'transitive' if the first world is related to the third world (ΓRΔ and ΔRΩ → ΓRΩ); and 'symmetric' if the accessibility relation is mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.7)
     A reaction: The different systems of modal logic largely depend on how these accessibility relations are specified. There is also the 'serial' relation, which just says that any world has another world accessible to it.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
     Full Idea: Simplified S5 rules: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X. 'n' picks any world; in a) and b) 'k' asserts a new world; in c) and d) 'k' refers to a known world
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
     Full Idea: General tableau rule for negation: if σ ¬¬X then σ X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for disjunctions: a) if σ ¬(X ∨ Y) then σ ¬X and σ ¬Y b) if σ X ∨ Y then σ X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for existential modality: a) if σ ◊ X then σ.n X b) if σ ¬□ X then σ.n ¬X , where n introduces some new world (rather than referring to a world that can be seen).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the existential rule of ◊, usually read as 'possibly', asserts something about a new as yet unseen world, whereas □ only refers to worlds which can already be seen,
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
     Full Idea: System T reflexive rules (also for B, S4, S5): a) if σ □X then σ X b) if σ ¬◊X then σ ¬X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
     Full Idea: System D serial rules (also for T, B, S4, S5): a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System B symmetric rules (also for S5): a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4 transitive rules (also for K4, S4, S5): a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4r reversed-transitive rules (also for S5): a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is possibly true in a world, then it is also true in some world which is accessible from that world. That is: Γ ||- ◊X ↔ for some Δ ∈ G, ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is necessarily true in a world, then it is also true in all worlds which are accessible from that world. That is: Γ ||- □X ↔ for every Δ ∈ G, if ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for conjunctions: a) if σ X ∧ Y then σ X and σ Y b) if σ ¬(X ∧ Y) then σ ¬X or σ ¬Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for biconditionals: a) if σ (X ↔ Y) then σ (X → Y) and σ (Y → X) b) if σ ¬(X ↔ Y) then σ ¬(X → Y) or σ ¬(Y → X)
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for implications: a) if σ ¬(X → Y) then σ X and σ ¬Y b) if σ X → Y then σ ¬X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for universal modality: a) if σ ¬◊ X then σ.m ¬X b) if σ □ X then σ.m X , where m refers to a world that can be seen (rather than introducing a new world).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the universal rule of □, usually read as 'necessary', only refers to worlds which can already be seen, whereas possibility (◊) asserts some thing about a new as yet unseen world.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
     Full Idea: The system K has no frame conditions imposed on its accessibility relation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: The system is named K in honour of Saul Kripke.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
     Full Idea: System D is usually thought of as Deontic Logic, concerning obligations and permissions. □P → P is not valid in D, since just because an action is obligatory, it does not follow that it is performed.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.12.2 Ex)
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system D has the 'serial' condition imposed on its accessibility relation - that is, every world must have some world which is accessible to it.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system T has the 'reflexive' condition imposed on its accessibility relation - that is, every world must be accessible to itself.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system K4 has the 'transitive' condition imposed on its accessibility relation - that is, if a relation holds between worlds 1 and 2 and worlds 2 and 3, it must hold between worlds 1 and 3. The relation carries over.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system B has the 'reflexive' and 'symmetric' conditions imposed on its accessibility relation - that is, every world must be accessible to itself, and any relation between worlds must be mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S4 has the 'reflexive' and 'transitive' conditions imposed on its accessibility relation - that is, every world is accessible to itself, and accessibility carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S5 has the 'reflexive', 'symmetric' and 'transitive' conditions imposed on its accessibility relation - that is, every world is self-accessible, and accessibility is mutual, and it carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: S5 has total accessibility, and hence is the most powerful system (though it might be too powerful).
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
     Full Idea: P→◊P is usually considered to be valid, but its converse, ◊P→P is not, so (by Frege's own criterion) P and possibly-P differ in conceptual content, and there is no reason why logic should not be widened to accommodate this.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.2)
     A reaction: Frege had denied that modality affected the content of a proposition (1879:p.4). The observation here is the foundation for the need for a modal logic.
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
     Full Idea: In epistemic logic the knower is treated as logically omniscient. This is puzzling because one then cannot know something and yet fail to know that one knows it (the Principle of Positive Introspection).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: This is nowadays known as the K-K Problem - to know, must you know that you know. Broadly, we find that externalists say you don't need to know that you know (so animals know things), but internalists say you do need to know that you know.
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
     Full Idea: In epistemic logic we read Υ as 'KaP: a knows that P', and ◊ as 'PaP: it is possible, for all a knows, that P' (a is an individual). For belief we read them as 'BaP: a believes that P' and 'CaP: compatible with everything a believes that P'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: [scripted capitals and subscripts are involved] Hintikka 1962 is the source of this. Fitting and Mendelsohn prefer □ to read 'a is entitled to know P', rather than 'a knows that P'.
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
     Full Idea: We introduce four future and past tense operators: FP: it will sometime be the case that P. PP: it was sometime the case that P. GP: it will always be the case that P. HP: it has always been the case that P. (P itself is untensed).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.10)
     A reaction: Temporal logic begins with A.N. Prior, and starts with □ as 'always', and ◊ as 'sometimes', but then adds these past and future divisions. Two different logics emerge, taking □ and ◊ as either past or as future.
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
     Full Idea: The Converse Barcan says nothing passes out of existence in alternative situations. The Barcan says that nothing comes into existence. The two together say the same things exist no matter what the situation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.9)
     A reaction: I take the big problem to be that these reflect what it is you want to say, and that does not keep stable across a conversation, so ordinary rational discussion sometimes asserts these formulas, and 30 seconds later denies them.
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
     Full Idea: The Barcan formula corresponds to anti-monotonicity, and the Converse Barcan formula corresponds to monotonicity.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 6.3)
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Frege's sign |--- meant judgements, but the modern |- turnstile means inference, with intecedents [Potter]
     Full Idea: Natural deduction systems generally depend on conditional proof, but for Frege everything is asserted unconditionally. The modern turnstile |- is allowed to have antecedents, and hence to represent inference rather than Frege's judgement sign |---.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 03 'Axioms')
     A reaction: [compressed] Shockingly, Frege's approach seems more psychological than the modern approach. I would say that the whole point of logic is that it has to be conditional, because the truth of the antecedents is irrelevant.
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Deductivism can't explain how the world supports unconditional conclusions [Potter]
     Full Idea: Deductivism is a good account of large parts of mathematics, but stumbles where mathematics is directly applicable to the world. It fails to explain how we detach the antecedent so as to arrive at unconditional conclusions.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 12 'Deduc')
     A reaction: I suppose the reply would be that we have designed deductive structures which fit our understanding of reality - so it is all deductive, but selected pragmatically.
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
     Full Idea: 'Predicate abstraction' is a key idea. It is a syntactic mechanism for abstracting a predicate from a formula, providing a scoping mechanism for constants and function symbols similar to that provided for variables by quantifiers.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], Pref)
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Modern logical truths are true under all interpretations of the non-logical words [Potter]
     Full Idea: In the modern definition, a 'logical truth' is true under every interpretation of the non-logical words it contains.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 19 'Frege's')
     A reaction: What if the non-logical words are nonsense, or are used inconsistently ('good'), or ambiguously ('bank'), or vaguely ('bald'), or with unsure reference ('the greatest philosopher' becomes 'Bentham')? What qualifies as an 'interpretation'?
6. Mathematics / C. Sources of Mathematics / 7. Formalism
The formalist defence against Gödel is to reject his metalinguistic concept of truth [Potter]
     Full Idea: Gödel's theorem does not refute formalism outright, because the committed formalist need not recognise the metalinguistic notion of truth to which the theorem appeals.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 45 'Log')
     A reaction: The theorem was prior to Tarski's account of truth. Potter says Gödel avoided explicit mention of truth because of this problem. In general Gödel showed that there are truths outside the formal system (which is all provable).
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Why is fictional arithmetic applicable to the real world? [Potter]
     Full Idea: Fictionalists struggle to explain why arithmetic is applicable to the real world in a way that other stories are not.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 21 'Math')
     A reaction: We know why some novels are realistic and others just the opposite. If a novel aimed to 'model' the real world it would be even closer to it. Fictionalists must explain why some fictions are useful.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
If 'concrete' is the negative of 'abstract', that means desires and hallucinations are concrete [Potter]
     Full Idea: The word 'concrete' is often used as the negative of 'abstract', with the slightly odd consequence that desires and hallucinations are thereby classified as concrete.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 12 'Numb')
     A reaction: There is also the even more baffling usage of 'abstract' for the most highly generalised mathematics, leaving lower levels as 'concrete'. I favour the use of 'generalised' wherever possible, rather than 'abstract'.
8. Modes of Existence / A. Relations / 4. Formal Relations / c. Ancestral relation
'Greater than', which is the ancestral of 'successor', strictly orders the natural numbers [Potter]
     Full Idea: From the successor function we can deduce its ancestral, the 'greater than' relation, which is a strict total ordering of the natural numbers. (Frege did not mention this, but Dedekind worked it out, when expounding definition by recursion).
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 07 'Def')
     A reaction: [compressed]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
     Full Idea: Equality has caused much grief for modal logic. Many of the problems, which have struck at the heart of the coherence of modal logic, stem from the apparent violations of the Indiscernibility of Identicals.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.1)
     A reaction: Thus when I say 'I might have been three inches taller', presumably I am referring to someone who is 'identical' to me, but who lacks one of my properties. A simple solution is to say that the person is 'essentially' identical.
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
A material conditional cannot capture counterfactual reasoning [Potter]
     Full Idea: What the material conditional most significantly fails to capture is counterfactual reasoning.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 04 'Sem')
     A reaction: The point is that counterfactuals say 'if P were the case (which it isn't), then Q'. But that means P is false, and in the material conditional everything follows from a falsehood. A reinterpretation of the conditional might embrace counterfactuals.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
     Full Idea: If □ is to be sensitive to the quality of the truth of a proposition in its scope, then it must be sensitive as to whether an object is picked out by an essential property or by a contingent one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.3)
     A reaction: This incredibly simple idea strikes me as being powerful and important. ...However, creating illustrative examples leaves me in a state of confusion. You try it. They cite '9' and 'number of planets'. But is it just nominal essence? '9' must be 9.
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
     Full Idea: The property of 'possibly being a Republican' is as much a property of Bill Clinton as is 'being a democrat'. So we don't peel off his properties from world to world. Hence the bundle theory fits our treatment of objects better than bare particulars.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.3)
     A reaction: This bundle theory is better described in recent parlance as the 'modal profile'. I am reluctant to talk of a modal truth about something as one of its 'properties'. An objects, then, is a bundle of truths?
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
     Full Idea: The main technical problem with counterpart theory is that the being-a-counterpart relation is, in general, neither symmetric nor transitive, so no natural logic of equality is forthcoming.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
     A reaction: That is, nothing is equal to a counterpart, either directly or indirectly.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Appearances are nothing beyond representations, which is transcendental ideality [Moore,AW]
     Full Idea: Appearances in general are nothing outside our representations, which is just what we mean by transcendental ideality.
     From: A.W. Moore (The Evolution of Modern Metaphysics [2012], B535/A507)
13. Knowledge Criteria / C. External Justification / 3. Reliabilism / b. Anti-reliabilism
Knowledge from a drunken schoolteacher is from a reliable and unreliable process [Potter]
     Full Idea: Knowledge might result from a reliable and an unreliable process. ...Is something knowledge if you were told it by a drunken schoolteacher?
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 66 'Rel')
     A reaction: Nice example. The listener must decide which process to rely on. But how do you decide that, if not by assessing the likely truth of what you are being told? It could be a bad teacher who is inspired by drink.
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
Traditionally there are twelve categories of judgement, in groups of three [Potter]
     Full Idea: The traditional categorisation of judgements (until at least 1800) was as universal, particular or singular; as affirmative, negative or infinite; as categorical, hypothetical or disjunctive; or as problematic, assertoric or apodictic.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 02 'Trans')
     A reaction: Arranging these things in neat groups of three seems to originate with the stoics. Making distinctions like this is very much the job of a philosopher, but arranging them in neat equinumerous groups is intellectual tyranny.
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
The phrase 'the concept "horse"' can't refer to a concept, because it is saturated [Potter]
     Full Idea: Frege's mirroring principle (that the structure of thoughts mirrors that of language) has the uncomfortable consequence that since the phrase 'the concept "horse"' is saturated, it cannot refer to something unsaturated, which includes concepts.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 16 'Conc')
19. Language / C. Assigning Meanings / 4. Compositionality
Compositionality should rely on the parsing tree, which may contain more than sentence components [Potter]
     Full Idea: Compositionality is best seen as saying the semantic value of a string is explained by the strings lower down its parsing tree. It is unimportant whether a string is always parsed in terms of its own substrings.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 05 'Sem')
     A reaction: That is, the analysis must explain the meaning, but the analysis can contain more than the actual ingredients of the sentence (which would be too strict).
'Direct compositonality' says the components wholly explain a sentence meaning [Potter]
     Full Idea: Some authors urge the strong notion of 'direct compositionality', which requires that the content of a sentence be explained in terms of the contents of the component parts of that very sentence.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 05 'Sem')
     A reaction: The alternative is that meaning is fully explained by an analysis, but that may contain more than the actual components of the sentence.
Compositionality is more welcome in logic than in linguistics (which is more contextual) [Potter]
     Full Idea: The principle of compositionality is more popular among philosophers of logic than of language, because the subtle context-sensitivity or ordinary language makes providing a compositional semantics for it a daunting challenge.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 21 'Lang')
     A reaction: Logicians love breaking complex entities down into simple atomic parts. Linguistics tries to pin down something much more elusive.