Combining Texts

All the ideas for 'The Evolution of Modern Metaphysics', 'reports' and 'Intro to Gdel's Theorems'

unexpand these ideas     |    start again     |     specify just one area for these texts


63 ideas

1. Philosophy / D. Nature of Philosophy / 1. Philosophy
He studied philosophy by suspending his judgement on everything [Pyrrho, by Diog. Laertius]
     Full Idea: He studied philosophy on the principle of suspending his judgement on all points.
     From: report of Pyrrho (reports [c.325 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.Py.3
     A reaction: In what sense was Pyrrho a philosopher, then? He must have asserted SOME generalised judgments.
1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
Metaphysics is the most general attempt to make sense of things [Moore,AW]
     Full Idea: Metaphysics is the most general attempt to make sense of things.
     From: A.W. Moore (The Evolution of Modern Metaphysics [2012], Intro)
     A reaction: This is the first sentence of Moore's book, and a touchstone idea all the way through. It stands up well, because it says enough without committing to too much. I have to agree with it. It implies explanation as the key. I like generality too.
2. Reason / A. Nature of Reason / 9. Limits of Reason
Sceptics say reason is only an instrument, because reason can only be attacked with reason [Pyrrho, by Diog. Laertius]
     Full Idea: The Sceptics say that they only employ reason as an instrument, because it is impossible to overturn the authority of reason, without employing reason.
     From: report of Pyrrho (reports [c.325 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.Py.8
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
There cannot be a set theory which is complete [Smith,P]
     Full Idea: By Gödel's First Incompleteness Theorem, there cannot be a negation-complete set theory.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 01.3)
     A reaction: This means that we can never prove all the truths of a system of set theory.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order arithmetic can prove new sentences of first-order [Smith,P]
     Full Idea: Going second-order in arithmetic enables us to prove new first-order arithmetical sentences that we couldn't prove before.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 23.4)
     A reaction: The wages of Satan, perhaps. We can prove things about objects by proving things about their properties and sets and functions. Smith says this fact goes all the way up the hierarchy.
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'partial function' maps only some elements to another set [Smith,P]
     Full Idea: A 'partial function' is one which maps only some elements of a domain to elements in another set. For example, the reciprocal function 1/x is not defined for x=0.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1 n1)
A 'total function' maps every element to one element in another set [Smith,P]
     Full Idea: A 'total function' is one which maps every element of a domain to exactly one corresponding value in another set.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1)
An argument is a 'fixed point' for a function if it is mapped back to itself [Smith,P]
     Full Idea: If a function f maps the argument a back to a itself, so that f(a) = a, then a is said to be a 'fixed point' for f.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 20.5)
The 'range' of a function is the set of elements in the output set created by the function [Smith,P]
     Full Idea: The 'range' of a function is the set of elements in the output set that are values of the function for elements in the original set.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1)
     A reaction: In other words, the range is the set of values that were created by the function.
Two functions are the same if they have the same extension [Smith,P]
     Full Idea: We count two functions as being the same if they have the same extension, i.e. if they pair up arguments with values in the same way.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 11.3)
     A reaction: So there's only one way to skin a cat in mathematical logic.
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
The Comprehension Schema says there is a property only had by things satisfying a condition [Smith,P]
     Full Idea: The so-called Comprehension Schema ∃X∀x(Xx ↔ φ(x)) says that there is a property which is had by just those things which satisfy the condition φ.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 22.3)
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A 'theorem' of a theory is a sentence derived from the axioms using the proof system [Smith,P]
     Full Idea: 'Theorem': given a derivation of the sentence φ from the axioms of the theory T using the background logical proof system, we will say that φ is a 'theorem' of the theory. Standard abbreviation is T |- φ.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
A 'natural deduction system' has no axioms but many rules [Smith,P]
     Full Idea: A 'natural deduction system' will have no logical axioms but may rules of inference.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 09.1)
     A reaction: He contrasts this with 'Hilbert-style systems', which have many axioms but few rules. Natural deduction uses many assumptions which are then discharged, and so tree-systems are good for representing it.
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
No nice theory can define truth for its own language [Smith,P]
     Full Idea: No nice theory can define truth for its own language.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 21.5)
     A reaction: This leads on to Tarski's account of truth.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'injective' ('one-to-one') function creates a distinct output element from each original [Smith,P]
     Full Idea: An 'injective' function is 'one-to-one' - each element of the output set results from a different element of the original set.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1)
     A reaction: That is, two different original elements cannot lead to the same output element.
A 'surjective' ('onto') function creates every element of the output set [Smith,P]
     Full Idea: A 'surjective' function is 'onto' - the whole of the output set results from the function being applied to elements of the original set.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1)
A 'bijective' function has one-to-one correspondence in both directions [Smith,P]
     Full Idea: A 'bijective' function has 'one-to-one correspondence' - it is both surjective and injective, so that every element in each of the original and the output sets has a matching element in the other.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1)
     A reaction: Note that 'injective' is also one-to-one, but only in the one direction.
5. Theory of Logic / K. Features of Logics / 3. Soundness
If everything that a theory proves is true, then it is 'sound' [Smith,P]
     Full Idea: If everything that a theory proves must be true, then it is a 'sound' theory.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 01.1)
Soundness is true axioms and a truth-preserving proof system [Smith,P]
     Full Idea: Soundness is normally a matter of having true axioms and a truth-preserving proof system.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
     A reaction: The only exception I can think of is if a theory consisted of nothing but the axioms.
A theory is 'sound' iff every theorem is true (usually from true axioms and truth-preservation) [Smith,P]
     Full Idea: A theory is 'sound' iff every theorem of it is true (i.e. true on the interpretation built into its language). Soundness is normally a matter of having true axioms and a truth-preserving proof system.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
5. Theory of Logic / K. Features of Logics / 4. Completeness
A theory is 'negation complete' if it proves all sentences or their negation [Smith,P]
     Full Idea: A theory is 'negation complete' if it decides every sentence of its language (either the sentence, or its negation).
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
'Complete' applies both to whole logics, and to theories within them [Smith,P]
     Full Idea: There is an annoying double-use of 'complete': a logic may be semantically complete, but there may be an incomplete theory expressed in it.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
A theory is 'negation complete' if one of its sentences or its negation can always be proved [Smith,P]
     Full Idea: Logicians say that a theory T is '(negation) complete' if, for every sentence φ in the language of the theory, either φ or ¬φ is deducible in T's proof system. If this were the case, then truth could be equated with provability.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 01.1)
     A reaction: The word 'negation' seems to be a recent addition to the concept. Presumable it might be the case that φ can always be proved, but not ¬φ.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Two routes to Incompleteness: semantics of sound/expressible, or syntax of consistency/proof [Smith,P]
     Full Idea: There are two routes to Incompleteness results. One goes via the semantic assumption that we are dealing with sound theories, using a result about what they can express. The other uses the syntactic notion of consistency, with stronger notions of proof.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 18.1)
5. Theory of Logic / K. Features of Logics / 7. Decidability
'Effective' means simple, unintuitive, independent, controlled, dumb, and terminating [Smith,P]
     Full Idea: An 'effectively decidable' (or 'computable') algorithm will be step-by-small-step, with no need for intuition, or for independent sources, with no random methods, possible for a dumb computer, and terminates in finite steps.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.2)
     A reaction: [a compressed paragraph]
A theory is 'decidable' if all of its sentences could be mechanically proved [Smith,P]
     Full Idea: A theory is 'decidable' iff there is a mechanical procedure for determining whether any sentence of its language can be proved.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
     A reaction: Note that it doesn't actually have to be proved. The theorems of the theory are all effectively decidable.
Any consistent, axiomatized, negation-complete formal theory is decidable [Smith,P]
     Full Idea: Any consistent, axiomatized, negation-complete formal theory is decidable.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.6)
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A set is 'enumerable' is all of its elements can result from a natural number function [Smith,P]
     Full Idea: A set is 'enumerable' iff either the set is empty, or there is a surjective function to the set from the set of natural numbers, so that the set is in the range of that function.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.3)
A set is 'effectively enumerable' if a computer could eventually list every member [Smith,P]
     Full Idea: A set is 'effectively enumerable' if an (idealised) computer could be programmed to generate a list of its members such that any member will eventually be mentioned (even if the list is empty, or without end, or contains repetitions).
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.4)
A finite set of finitely specifiable objects is always effectively enumerable (e.g. primes) [Smith,P]
     Full Idea: A finite set of finitely specifiable objects is always effectively enumerable (for example, the prime numbers).
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.4)
The set of ordered pairs of natural numbers <i,j> is effectively enumerable [Smith,P]
     Full Idea: The set of ordered pairs of natural numbers (i,j) is effectively enumerable, as proven by listing them in an array (across: <0,0>, <0,1>, <0,2> ..., and down: <0,0>, <1,0>, <2,0>...), and then zig-zagging.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.5)
The thorems of a nice arithmetic can be enumerated, but not the truths (so they're diffferent) [Smith,P]
     Full Idea: The theorems of any properly axiomatized theory can be effectively enumerated. However, the truths of any sufficiently expressive arithmetic can't be effectively enumerated. Hence the theorems and truths of arithmetic cannot be the same.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 05 Intro)
5. Theory of Logic / K. Features of Logics / 9. Expressibility
Being 'expressible' depends on language; being 'capture/represented' depends on axioms and proof system [Smith,P]
     Full Idea: Whether a property is 'expressible' in a given theory depends on the richness of the theory's language. Whether the property can be 'captured' (or 'represented') by the theory depends on the richness of the axioms and proof system.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 04.7)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
For primes we write (x not= 1 ∧ ∀u∀v(u x v = x → (u = 1 ∨ v = 1))) [Smith,P]
     Full Idea: For prime numbers we write (x not= 1 ∧ ∀u∀v(u x v = x → (u = 1 ∨ v = 1))). That is, the only way to multiply two numbers and a get a prime is if one of them is 1.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 04.5)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The reals contain the naturals, but the theory of reals doesn't contain the theory of naturals [Smith,P]
     Full Idea: It has been proved (by Tarski) that the real numbers R is a complete theory. But this means that while the real numbers contain the natural numbers, the pure theory of real numbers doesn't contain the theory of natural numbers.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 18.2)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The truths of arithmetic are just true equations and their universally quantified versions [Smith,P]
     Full Idea: The truths of arithmetic are just the true equations involving particular numbers, and universally quantified versions of such equations.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 27.7)
     A reaction: Must each equation be universally quantified? Why can't we just universally quantify over the whole system?
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
All numbers are related to zero by the ancestral of the successor relation [Smith,P]
     Full Idea: All numbers are related to zero by the ancestral of the successor relation.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 23.5)
     A reaction: The successor relation only ties a number to the previous one, not to the whole series. Ancestrals are a higher level of abstraction.
The number of Fs is the 'successor' of the Gs if there is a single F that isn't G [Smith,P]
     Full Idea: The number of Fs is the 'successor' of the number of Gs if there is an object which is an F, and the remaining things that are F but not identical to the object are equinumerous with the Gs.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 14.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / b. Baby arithmetic
Baby arithmetic covers addition and multiplication, but no general facts about numbers [Smith,P]
     Full Idea: Baby Arithmetic 'knows' the addition of particular numbers and multiplication, but can't express general facts about numbers, because it lacks quantification. It has a constant '0', a function 'S', and functions '+' and 'x', and identity and negation.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 08.1)
Baby Arithmetic is complete, but not very expressive [Smith,P]
     Full Idea: Baby Arithmetic is negation complete, so it can prove every claim (or its negation) that it can express, but it is expressively extremely impoverished.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 08.3)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / c. Robinson arithmetic
Robinson Arithmetic (Q) is not negation complete [Smith,P]
     Full Idea: Robinson Arithmetic (Q) is not negation complete
     From: Peter Smith (Intro to Gödel's Theorems [2007], 08.4)
Robinson Arithmetic 'Q' has basic axioms, quantifiers and first-order logic [Smith,P]
     Full Idea: We can beef up Baby Arithmetic into Robinson Arithmetic (referred to as 'Q'), by restoring quantifiers and variables. It has seven generalised axioms, plus standard first-order logic.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 08.3)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Natural numbers have zero, unique successors, unending, no circling back, and no strays [Smith,P]
     Full Idea: The sequence of natural numbers starts from zero, and each number has just one immediate successor; the sequence continues without end, never circling back on itself, and there are no 'stray' numbers, lurking outside the sequence.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 01.1)
     A reaction: These are the characteristics of the natural numbers which have to be pinned down by any axiom system, such as Peano's, or any more modern axiomatic structures. We are in the territory of Gödel's theorems.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
The logic of arithmetic must quantify over properties of numbers to handle induction [Smith,P]
     Full Idea: If the logic of arithmetic doesn't have second-order quantifiers to range over properties of numbers, how can it handle induction?
     From: Peter Smith (Intro to Gödel's Theorems [2007], 10.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Multiplication only generates incompleteness if combined with addition and successor [Smith,P]
     Full Idea: Multiplication in itself isn't is intractable. In 1929 Skolem showed a complete theory for a first-order language with multiplication but lacking addition (or successor). Multiplication together with addition and successor produces incompleteness.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 10.7 n8)
Incompleteness results in arithmetic from combining addition and successor with multiplication [Smith,P]
     Full Idea: Putting multiplication together with addition and successor in the language of arithmetic produces incompleteness.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 10.7)
     A reaction: His 'Baby Arithmetic' has all three and is complete, but lacks quantification (p.51)
8. Modes of Existence / A. Relations / 4. Formal Relations / c. Ancestral relation
The 'ancestral' of a relation is a new relation which creates a long chain of the original relation [Smith,P]
     Full Idea: The 'ancestral' of a relation is that relation which holds when there is an indefinitely long chain of things having the initial relation.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 23.5)
     A reaction: The standard example is spotting the relation 'ancestor' from the receding relation 'parent'. This is a sort of abstraction derived from a relation which is not equivalent (parenthood being transitive but not reflexive). The idea originated with Frege.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Appearances are nothing beyond representations, which is transcendental ideality [Moore,AW]
     Full Idea: Appearances in general are nothing outside our representations, which is just what we mean by transcendental ideality.
     From: A.W. Moore (The Evolution of Modern Metaphysics [2012], B535/A507)
13. Knowledge Criteria / A. Justification Problems / 1. Justification / a. Justification issues
If we need a criterion of truth, we need to know whether it is the correct criterion [Pyrrho, by Fogelin]
     Full Idea: Against the Stoics, the Pyrrhonians argued that if someone presents a criterion of truth, then it will be important to determine whether it is the correct criterion.
     From: report of Pyrrho (reports [c.325 BCE]) by Robert Fogelin - Walking the Tightrope of Reason Ch.4
     A reaction: Hence Davidson says that attempts to define truth are 'folly'. If something has to be taken as basic, then truth seems a good candidate (since, for example, logical operators could not otherwise be defined by means of 'truth' tables).
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
The Pyrrhonians attacked the dogmas of professors, not ordinary people [Pyrrho, by Fogelin]
     Full Idea: The attacks of the Pyrrhonian sceptics are directed against the dogmas of the 'professors', not against the beliefs of the common people pursuing the business of daily life.
     From: report of Pyrrho (reports [c.325 BCE]) by Robert Fogelin - Walking the Tightrope of Reason Ch.4
     A reaction: This may be because they thought that ordinary people were too confused to be worth attacking, rather than because they lived in a state of beautifully appropriate beliefs. Naďve realism is certainly worth attacking.
13. Knowledge Criteria / D. Scepticism / 6. Scepticism Critique
Academics said that Pyrrhonians were guilty of 'negative dogmatism' [Pyrrho, by Fogelin]
     Full Idea: The ancient Academic sceptics charged the Pyrrhonian sceptics with 'negative dogmatism' when they claimed that a certain kind of knowledge is impossible.
     From: report of Pyrrho (reports [c.325 BCE]) by Robert Fogelin - Walking the Tightrope of Reason Ch.4
     A reaction: It is this kind of point which should push us towards some sort of rationalism, because certain a priori 'dogmas' seem to be indispensable to get any sort of discussion off the ground. The only safe person is Cratylus (see Idea 578).
13. Knowledge Criteria / E. Relativism / 1. Relativism
Judgements vary according to local culture and law (Mode 5) [Pyrrho, by Diog. Laertius]
     Full Idea: Fifth mode: judgements vary according to local custom, law and culture (Persians marry their daughters).
     From: report of Pyrrho (reports [c.325 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.Py.9
Objects vary according to which sense perceives them (Mode 3) [Pyrrho, by Diog. Laertius]
     Full Idea: Third mode: things like an apple vary according to which sense perceives them (yellow, sweet, and fragrant).
     From: report of Pyrrho (reports [c.325 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.Py.9
Perception varies with viewing distance and angle (Mode 7) [Pyrrho, by Diog. Laertius]
     Full Idea: Seventh mode: perception varies according to viewing distance and angle (the sun, and a dove's neck).
     From: report of Pyrrho (reports [c.325 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.Py.9
Perception and judgement depend on comparison (Mode 10) [Pyrrho, by Diog. Laertius]
     Full Idea: Tenth mode: perceptions and judgements depend on comparison (light/heavy, above/below).
     From: report of Pyrrho (reports [c.325 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.Py.9
Individuals vary in responses and feelings (Mode 2) [Pyrrho, by Diog. Laertius]
     Full Idea: Second mode: individual men vary in responses and feelings (heat and cold, for example).
     From: report of Pyrrho (reports [c.325 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.Py.9
Animals vary in their feelings and judgements (Mode 1) [Pyrrho, by Diog. Laertius]
     Full Idea: First mode: animals vary in their feelings and judgements (of food, for example).
     From: report of Pyrrho (reports [c.325 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.Py.9
Perception varies with madness or disease (Mode 4) [Pyrrho, by Diog. Laertius]
     Full Idea: Fourth mode: perceivers vary in their mental and physical state (such as the mad and the sick).
     From: report of Pyrrho (reports [c.325 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.Py.9
Perception of things depends on their size or quantity (Mode 8) [Pyrrho, by Diog. Laertius]
     Full Idea: Eighth mode: perceptions of things depend on their magnitude or quantity (food and wine).
     From: report of Pyrrho (reports [c.325 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.Py.9
Perception of objects depends on surrounding conditions (Mode 6) [Pyrrho, by Diog. Laertius]
     Full Idea: Sixth mode: the perception of an object depends on surrounding conditions (sunlight and lamplight).
     From: report of Pyrrho (reports [c.325 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.Py.9
Perception is affected by expectations (Mode 9) [Pyrrho, by Diog. Laertius]
     Full Idea: Ninth mode: we perceive things according to what we expect (earthquakes and sunshine).
     From: report of Pyrrho (reports [c.325 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.Py.9
26. Natural Theory / C. Causation / 7. Eliminating causation
There are no causes, because they are relative, and alike things can't cause one another [Pyrrho, by Diog. Laertius]
     Full Idea: The idea of cause is relative to that of which it is the cause, and so has no real existence. …Also cause must either be body causing body, or incorporeal causing incorporeal, and neither of these is possible.
     From: report of Pyrrho (reports [c.325 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.11.11
27. Natural Reality / A. Classical Physics / 1. Mechanics / a. Explaining movement
Motion can't move where it is, and can't move where it isn't, so it can't exist [Pyrrho, by Diog. Laertius]
     Full Idea: Motion is not moved in the place in which it is is, and it is impossible that it should be moved in the place in which it is not, so there is no such thing as motion.
     From: report of Pyrrho (reports [c.325 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.11.11