Combining Texts

All the ideas for 'Mereology', 'On the Infinite' and 'The Foundations of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


29 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Maybe set theory need not be well-founded [Varzi]
     Full Idea: There are some proposals for non-well-founded set theory (tolerating cases of self-membership and membership circularities).
     From: Achille Varzi (Mereology [2003], 2.1)
     A reaction: [He cites Aczel 1988, and Barwise and Moss 1996]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: there is an infinity of distinguishable individuals [Ramsey]
     Full Idea: The Axiom of Infinity means that there are an infinity of distinguishable individuals, which is an empirical proposition.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §5)
     A reaction: The Axiom sounds absurd, as a part of a logical system, but Ramsey ends up defending it. Logical tautologies, which seem to be obviously true, are rendered absurd if they don't refer to any objects, and some of them refer to infinities of objects.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Reducibility: to every non-elementary function there is an equivalent elementary function [Ramsey]
     Full Idea: The Axiom of Reducibility asserted that to every non-elementary function there is an equivalent elementary function [note: two functions are equivalent when the same arguments render them both true or both false].
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §2)
     A reaction: Ramsey in the business of showing that this axiom from Russell and Whitehead is not needed. He says that the axiom seems to be needed for induction and for Dedekind cuts. Since the cuts rest on it, and it is weak, Ramsey says it must go.
4. Formal Logic / G. Formal Mereology / 1. Mereology
Mereology need not be nominalist, though it is often taken to be so [Varzi]
     Full Idea: While mereology was originally offered with a nominalist viewpoint, resulting in a conception of mereology as an ontologically parsimonious alternative to set theory, there is no necessary link between analysis of parthood and nominalism.
     From: Achille Varzi (Mereology [2003], 1)
     A reaction: He cites Lesniewski and Leonard-and-Goodman. Do you allow something called a 'whole' into your ontology, as well as the parts? He observes that while 'wholes' can be concrete, they can also be abstract, if the parts are abstract.
Are there mereological atoms, and are all objects made of them? [Varzi]
     Full Idea: It is an open question whether there are any mereological atoms (with no proper parts), and also whether every object is ultimately made up of atoms.
     From: Achille Varzi (Mereology [2003], 3)
     A reaction: Such a view would have to presuppose (metaphysically) that the divisibility of matter has limits. If one follows this route, then are there only 'natural' wholes, or are we 'unrestricted' in our view of how the atoms combine? I favour the natural route.
There is something of which everything is part, but no null-thing which is part of everything [Varzi]
     Full Idea: It is common in mereology to hold that there is something of which everything is part, but few hold that there is a 'null entity' that is part of everything.
     From: Achille Varzi (Mereology [2003], 4.1)
     A reaction: This comes out as roughly the opposite of set theory, which cannot do without the null set, but is not keen on the set of everything.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Either 'a = b' vacuously names the same thing, or absurdly names different things [Ramsey]
     Full Idea: In 'a = b' either 'a' and 'b' are names of the same thing, in which case the proposition says nothing, or of different things, in which case it is absurd. In neither case is it an assertion of a fact; it only asserts when a or b are descriptions.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §1)
     A reaction: This is essentially Frege's problem with Hesperus and Phosphorus. How can identities be informative? So 2+2=4 is extensionally vacuous, but informative because they are different descriptions.
5. Theory of Logic / L. Paradox / 1. Paradox
Contradictions are either purely logical or mathematical, or they involved thought and language [Ramsey]
     Full Idea: Group A consists of contradictions which would occur in a logical or mathematical system, involving terms such as class or number. Group B contradictions are not purely logical, and contain some reference to thought, language or symbolism.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], p.171), quoted by Graham Priest - The Structure of Paradoxes of Self-Reference 1
     A reaction: This has become the orthodox division of all paradoxes, but the division is challenged by Priest (Idea 13373). He suggests that we now realise (post-Tarski?) that language is more involved in logic and mathematics than we thought.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
I aim to establish certainty for mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is the clearest statement of the famous Hilbert Programme, which is said to have been brought to an abrupt end by Gödel's Incompleteness Theorems.
We believe all mathematical problems are solvable [Hilbert]
     Full Idea: The thesis that every mathematical problem is solvable - we are all convinced that it really is so.
     From: David Hilbert (On the Infinite [1925], p.200)
     A reaction: This will include, for example, Goldbach's Conjecture (every even is the sum of two primes), which is utterly simple but with no proof anywhere in sight.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
No one shall drive us out of the paradise the Cantor has created for us [Hilbert]
     Full Idea: No one shall drive us out of the paradise the Cantor has created for us.
     From: David Hilbert (On the Infinite [1925], p.191), quoted by James Robert Brown - Philosophy of Mathematics
     A reaction: This is Hilbert's famous refusal to accept any account of mathematics, such as Kant's, which excludes actual infinities. Cantor had laid out a whole glorious hierarchy of different infinities.
We extend finite statements with ideal ones, in order to preserve our logic [Hilbert]
     Full Idea: To preserve the simple formal rules of ordinary Aristotelian logic, we must supplement the finitary statements with ideal statements.
     From: David Hilbert (On the Infinite [1925], p.195)
     A reaction: I find very appealing the picture of mathematics as rooted in the physical world, and then gradually extended by a series of 'idealisations', which should perhaps be thought of as fictions.
Only the finite can bring certainty to the infinite [Hilbert]
     Full Idea: Operating with the infinite can be made certain only by the finitary.
     From: David Hilbert (On the Infinite [1925], p.201)
     A reaction: See 'Compactness' for one aspect of this claim. I think Hilbert was fighting a rearguard action, and his idea now has few followers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The idea of an infinite totality is an illusion [Hilbert]
     Full Idea: Just as in the limit processes of the infinitesimal calculus, the infinitely large and small proved to be a mere figure of speech, so too we must realise that the infinite in the sense of an infinite totality, used in deductive methods, is an illusion.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is a very authoritative rearguard action. I no longer think the dispute matters much, it being just a dispute over a proposed new meaning for the word 'number'.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
There is no continuum in reality to realise the infinitely small [Hilbert]
     Full Idea: A homogeneous continuum which admits of the sort of divisibility needed to realise the infinitely small is nowhere to be found in reality.
     From: David Hilbert (On the Infinite [1925], p.186)
     A reaction: He makes this remark as a response to Planck's new quantum theory (the year before the big works of Heisenberg and Schrödinger). Personally I don't see why infinities should depend on the physical world, since they are imaginary.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Formalists neglect content, but the logicists have focused on generalizations, and neglected form [Ramsey]
     Full Idea: The formalists neglected the content altogether and made mathematics meaningless, but the logicians neglected the form and made mathematics consist of any true generalisations; only by taking account of both sides can we obtain an adequate theory.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §1)
     A reaction: He says mathematics is 'tautological generalizations'. It is a criticism of modern structuralism that it overemphasises form, and fails to pay attention to the meaning of the concepts which stand at the 'nodes' of the structure.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
The subject matter of mathematics is immediate and clear concrete symbols [Hilbert]
     Full Idea: The subject matter of mathematics is the concrete symbols themselves whose structure is immediately clear and recognisable.
     From: David Hilbert (On the Infinite [1925], p.192)
     A reaction: I don't think many people will agree with Hilbert here. Does he mean token-symbols or type-symbols? You can do maths in your head, or with different symbols. If type-symbols, you have to explain what a type is.
Formalism is hopeless, because it focuses on propositions and ignores concepts [Ramsey]
     Full Idea: The hopelessly inadequate formalist theory is, to some extent, the result of considering only the propositions of mathematics and neglecting the analysis of its concepts.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §1)
     A reaction: You'll have to read Ramsey to see how this thought pans out, but it at least gives a pointer to how to go about addressing the question.
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Mathematics divides in two: meaningful finitary statements, and empty idealised statements [Hilbert]
     Full Idea: We can conceive mathematics to be a stock of two kinds of formulas: first, those to which the meaningful communications of finitary statements correspond; and secondly, other formulas which signify nothing and which are ideal structures of our theory.
     From: David Hilbert (On the Infinite [1925], p.196), quoted by David Bostock - Philosophy of Mathematics 6.1
9. Objects / C. Structure of Objects / 5. Composition of an Object
'Composition is identity' says multitudes are the reality, loosely composing single things [Varzi]
     Full Idea: The thesis known as 'composition is identity' is that identity is mereological composition; a fusion is just the parts counted loosely, but it is strictly a multitude and loosely a single thing.
     From: Achille Varzi (Mereology [2003], 4.3)
     A reaction: [He cites D.Baxter 1988, in Mind] It is not clear, from this simple statement, what the difference is between multitudes that are parts of a thing, and multitudes that are not. A heavy weight seems to hang on the notion of 'composed of'.
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
Parts may or may not be attached, demarcated, arbitrary, material, extended, spatial or temporal [Varzi]
     Full Idea: The word 'part' can used whether it is attached, or arbitrarily demarcated, or gerrymandered, or immaterial, or unextended, or spatial, or temporal.
     From: Achille Varzi (Mereology [2003], 1)
If 'part' is reflexive, then identity is a limit case of parthood [Varzi]
     Full Idea: Taking reflexivity as constitutive of the meaning of 'part' amounts to regarding identity as a limit case of parthood.
     From: Achille Varzi (Mereology [2003], 2.1)
     A reaction: A nice thought, but it is horribly 'philosophical', and a long way from ordinary usage and common sense (which is, I'm sorry to say, a BAD thing).
'Part' stands for a reflexive, antisymmetric and transitive relation [Varzi]
     Full Idea: It seems obvious that 'part' stands for a partial ordering, a reflexive ('everything is part of itself'), antisymmetic ('two things cannot be part of each other'), and transitive (a part of a part of a thing is part of that thing) relation.
     From: Achille Varzi (Mereology [2003], 2.1)
     A reaction: I'm never clear why the reflexive bit of the relation should be taken as 'obvious', since it seems to defy normal usage and common sense. It would be absurd to say 'I'll give you part of the cake' and hand you the whole of it. See Idea 10651.
The parthood relation will help to define at least seven basic predicates [Varzi]
     Full Idea: With a basic parthood relation, we can formally define various mereological predicates, such as overlap, underlap, proper part, over-crossing, under-crossing, proper overlap, and proper underlap.
     From: Achille Varzi (Mereology [2003], 2.2)
     A reaction: [Varzi offers some diagrams, but they need interpretation]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
Sameness of parts won't guarantee identity if their arrangement matters [Varzi]
     Full Idea: We might say that sameness of parts is not sufficient for identity, as some entities may differ exclusively with respect to the arrangement of the parts, as when we compare 'John loves Mary' with 'Mary loves John'.
     From: Achille Varzi (Mereology [2003], 3.2)
     A reaction: Presumably wide dispersal should also prevent parts from fixing wholes, but there is so much vagueness here that it is tempting to go for unrestricted composition, and then work back to the common sense position.
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / b. Conceivable but impossible
Conceivability may indicate possibility, but literary fantasy does not [Varzi]
     Full Idea: Conceivability may well be a guide to possibility, but literary fantasy is by itself no evidence of conceivability.
     From: Achille Varzi (Mereology [2003], 2.1)
     A reaction: Very nice. People who cite 'conceivability' in this context often have a disgracefully loose usage for the word. Really, really conceivable is probably our only guide to possibility.
11. Knowledge Aims / A. Knowledge / 4. Belief / d. Cause of beliefs
I just confront the evidence, and let it act on me [Ramsey]
     Full Idea: I can but put the evidence before me, and let it act on my mind.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], p.202), quoted by Michael Potter - The Rise of Analytic Philosophy 1879-1930 70 'Deg'
     A reaction: Potter calls this observation 'downbeat', but I am an enthusiastic fan. It is roughly my view of both concept formation and of knowledge. You soak up the world, and respond appropriately. The trick is in the selection of evidence to confront.
11. Knowledge Aims / B. Certain Knowledge / 1. Certainty
My theory aims at the certitude of mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184), quoted by James Robert Brown - Philosophy of Mathematics Ch.5
     A reaction: This dream is famous for being shattered by Gödel's Incompleteness Theorem a mere six years later. Neverless there seem to be more limited certainties which are accepted in mathematics. The certainty of the whole of arithmetic is beyond us.
13. Knowledge Criteria / C. External Justification / 3. Reliabilism / a. Reliable knowledge
A belief is knowledge if it is true, certain and obtained by a reliable process [Ramsey]
     Full Idea: I have always said that a belief was knowledge if it was 1) true, ii) certain, iii) obtained by a reliable process.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], p.258), quoted by Michael Potter - The Rise of Analytic Philosophy 1879-1930 66 'Rel'
     A reaction: Not sure why it has to be 'certain' as well as 'true'. It seems that 'true' is objective, and 'certain' subjective. I think I know lots of things of which I am not fully certain. Reliabilism long preceded Alvin Goldman.