Combining Texts

All the ideas for 'fragments/reports', 'On the Notion of Cause' and 'First-order Logic, 2nd-order, Completeness'

unexpand these ideas     |    start again     |     specify just one area for these texts


19 ideas

1. Philosophy / G. Scientific Philosophy / 3. Scientism
Philosophers usually learn science from each other, not from science [Russell]
     Full Idea: Philosophers are too apt to take their views on science from each other, not from science.
     From: Bertrand Russell (On the Notion of Cause [1912], p.178)
     A reaction: This wasn't true of Russell, but it is certainly true of me. I rely on philosophical researchers to find the interesting bits of science for me (like blindsight). Memo to myself: read more science.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic needs the sets, and its consequence has epistemological problems [Rossberg]
     Full Idea: Second-order logic raises doubts because of its ontological commitment to the set-theoretic hierarchy, and the allegedly problematic epistemic status of the second-order consequence relation.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §1)
     A reaction: The 'epistemic' problem is whether you can know the truths, given that the logic is incomplete, and so they cannot all be proved. Rossberg defends second-order logic against the second problem. A third problem is that it may be mathematics.
Henkin semantics has a second domain of predicates and relations (in upper case) [Rossberg]
     Full Idea: Henkin semantics (for second-order logic) specifies a second domain of predicates and relations for the upper case constants and variables.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This second domain is restricted to predicates and relations which are actually instantiated in the model. Second-order logic is complete with this semantics. Cf. Idea 10756.
There are at least seven possible systems of semantics for second-order logic [Rossberg]
     Full Idea: In addition to standard and Henkin semantics for second-order logic, one might also employ substitutional or game-theoretical or topological semantics, or Boolos's plural interpretation, or even a semantics inspired by Lesniewski.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This is helpful in seeing the full picture of what is going on in these logical systems.
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Logical consequence is intuitively semantic, and captured by model theory [Rossberg]
     Full Idea: Logical consequence is intuitively taken to be a semantic notion, ...and it is therefore the formal semantics, i.e. the model theory, that captures logical consequence.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §2)
     A reaction: If you come at the issue from normal speech, this seems right, but if you start thinking about the necessity of logical consequence, that formal rules and proof-theory seem to be the foundation.
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Γ |- S says S can be deduced from Γ; Γ |= S says a good model for Γ makes S true [Rossberg]
     Full Idea: Deductive consequence, written Γ|-S, is loosely read as 'the sentence S can be deduced from the sentences Γ', and semantic consequence Γ|=S says 'all models that make Γ true make S true as well'.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §2)
     A reaction: We might read |= as 'true in the same model as'. What is the relation, though, between the LHS and the RHS? They seem to be mutually related to some model, but not directly to one another.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
In proof-theory, logical form is shown by the logical constants [Rossberg]
     Full Idea: A proof-theorist could insist that the logical form of a sentence is exhibited by the logical constants that it contains.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §2)
     A reaction: You have to first get to the formal logical constants, rather than the natural language ones. E.g. what is the truth table for 'but'? There is also the matter of the quantifiers and the domain, and distinguishing real objects and predicates from bogus.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A model is a domain, and an interpretation assigning objects, predicates, relations etc. [Rossberg]
     Full Idea: A standard model is a set of objects called the 'domain', and an interpretation function, assigning objects in the domain to names, subsets to predicate letters, subsets of the Cartesian product of the domain with itself to binary relation symbols etc.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: The model actually specifies which objects have which predicates, and which objects are in which relations. Tarski's account of truth in terms of 'satisfaction' seems to be just a description of those pre-decided facts.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
If models of a mathematical theory are all isomorphic, it is 'categorical', with essentially one model [Rossberg]
     Full Idea: A mathematical theory is 'categorical' if, and only if, all of its models are isomorphic. Such a theory then essentially has just one model, the standard one.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: So the term 'categorical' is gradually replacing the much-used phrase 'up to isomorphism'.
5. Theory of Logic / K. Features of Logics / 4. Completeness
Completeness can always be achieved by cunning model-design [Rossberg]
     Full Idea: All that should be required to get a semantics relative to which a given deductive system is complete is a sufficiently cunning model-theorist.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §5)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
A deductive system is only incomplete with respect to a formal semantics [Rossberg]
     Full Idea: No deductive system is semantically incomplete in and of itself; rather a deductive system is incomplete with respect to a specified formal semantics.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This important point indicates that a system might be complete with one semantics and incomplete with another. E.g. second-order logic can be made complete by employing a 'Henkin semantics'.
10. Modality / A. Necessity / 2. Nature of Necessity
'Necessary' is a predicate of a propositional function, saying it is true for all values of its argument [Russell]
     Full Idea: 'Necessary' is a predicate of a propositional function, meaning that it is true for all possible values of its argument or arguments. Thus 'If x is a man, x is mortal' is necessary, because it is true for any possible value of x.
     From: Bertrand Russell (On the Notion of Cause [1912], p.175)
     A reaction: This is presumably the intermediate definition of necessity, prior to modern talk of possible worlds. Since it is a predicate about functions, it is presumably a metalinguistic concept, like the semantic concept of truth.
15. Nature of Minds / A. Nature of Mind / 1. Mind / d. Location of mind
Alcmaeon was the first to say the brain is central to thinking [Alcmaeon, by Staden, von]
     Full Idea: Alcmaeon apparently was the first Greek to assign central cognitive and biological functions to the brain.
     From: report of Alcmaeon (fragments/reports [c.490 BCE]) by Heinrich von Staden - Alcmaeon
     A reaction: The name of Alcmaeon should be remembered with honour. This was 200 years before Aristotle, who still hadn't worked it out. I presume Alcmaeon inferred the truth from head injuries, which is overwhelming evidence, if you notice it.
26. Natural Theory / C. Causation / 7. Eliminating causation
The law of causality is a source of confusion, and should be dropped from philosophy [Russell]
     Full Idea: The law of causality, I believe, like much that passes muster among philosophers, is a relic of a bygone age, surviving, like the monarchy, only because it is erroneously supposed to do no harm.
     From: Bertrand Russell (On the Notion of Cause [1912], p.173)
     A reaction: A bold proposal which should be taken seriously. However, if we drop it from scientific explanation, we may well find ourselves permanently stuck with it in 'folk' explanation. What is the alternative?
If causes are contiguous with events, only the last bit is relevant, or the event's timing is baffling [Russell]
     Full Idea: A cause is an event lasting for a finite time, but if cause and effect are contiguous then the earlier part of a changing cause can be altered without altering the effect, and a static cause will exist placidly for some time and then explode into effect.
     From: Bertrand Russell (On the Notion of Cause [1912], p.177)
     A reaction: [very compressed] He concludes that they can't be contiguous (and eventually rejects cause entirely). This kind of problem is the sort of thing that only bothers philosophers - the question of how anything can happen at all. Why change?
26. Natural Theory / C. Causation / 9. General Causation / a. Constant conjunction
Striking a match causes its igniting, even if it sometimes doesn't work [Russell]
     Full Idea: A may be the cause of B even if there actually are cases of B not following A. Striking a match will be the cause of its igniting, in spite of the fact that some matches are damp and fail to ignite.
     From: Bertrand Russell (On the Notion of Cause [1912], p.185)
     A reaction: An important point, although defenders of the constant conjunction view can cope with it. There is a further regularity between dampness of matches and their failure to strike.
26. Natural Theory / D. Laws of Nature / 5. Laws from Universals
In causal laws, 'events' must recur, so they have to be universals, not particulars [Russell]
     Full Idea: An 'event' (in a statement of the 'law of causation') is intended to be something that is likely to recur, since otherwise the law becomes trivial. It follows that an 'event' is not some particular, but a universal of which there may be many instances.
     From: Bertrand Russell (On the Notion of Cause [1912], p.179)
     A reaction: I am very struck by this. It may be a key insight into understanding what a law of nature actually is. It doesn't follow that we must be realists about universals, but the process of abstraction from particulars is at the heart of generalisation.
26. Natural Theory / D. Laws of Nature / 6. Laws as Numerical
The constancy of scientific laws rests on differential equations, not on cause and effect [Russell]
     Full Idea: It is not in the sameness of causes and effects that the constancy of scientific law consists, but in sameness of relations. And even 'sameness of relations' is too simple a phrase; 'sameness of differential equations' is the only correct phrase.
     From: Bertrand Russell (On the Notion of Cause [1912], p.186)
     A reaction: This seems to be a commitment to the regularity view, since there is nothing more to natural law than that the variables keeping obeying the equations. It also seems to be a very instrumentalist view.
29. Religion / D. Religious Issues / 2. Immortality / b. Soul
Soul must be immortal, since it continually moves, like the heavens [Alcmaeon, by Aristotle]
     Full Idea: Alcmaeon says that the soul is immortal because it resembles immortal things and that this affection belongs to it because it is always in movement, like divine things, such the moon, the sun, the stars and the whole heaven.
     From: report of Alcmaeon (fragments/reports [c.490 BCE], DK 24) by Aristotle - De Anima 405a30
     A reaction: Hm. Fish and rivers seem to be continually moving too. Presumably we are like gods, but then Greek gods seem awfully like humans. I don't know the history of belief in immortality; an interesting topic.