Combining Texts

All the ideas for 'W.V. Quine', 'Emergent Evolution' and 'Natural Kinds'

unexpand these ideas     |    start again     |     specify just one area for these texts


34 ideas

1. Philosophy / G. Scientific Philosophy / 3. Scientism
Philosophy is continuous with science, and has no external vantage point [Quine]
     Full Idea: I see philosophy not as an a priori propaedeutic or groundwork for science, but as continuous with science. I see philosophy and science as in the same boat. …There is no external vantage point, no first philosophy.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: Philosophy is generalisation. Science holds the upper hand, because it settles the subject-matter to be generalised.
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Sentential logic is consistent (no contradictions) and complete (entirely provable) [Orenstein]
     Full Idea: Sentential logic has been proved consistent and complete; its consistency means that no contradictions can be derived, and its completeness assures us that every one of the logical truths can be proved.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: The situation for quantificational logic is not quite so clear (Orenstein p.98). I do not presume that being consistent and complete makes it necessarily better as a tool in the real world.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Axiomatization simply picks from among the true sentences a few to play a special role [Orenstein]
     Full Idea: In axiomatizing, we are merely sorting out among the truths of a science those which will play a special role, namely, serve as axioms from which we derive the others. The sentences are already true in a non-conventional or ordinary sense.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: If you were starting from scratch, as Euclidean geometers may have felt they were doing, you might want to decide which are the simplest truths. Axiomatizing an established system is a more advanced activity.
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
S4: 'poss that poss that p' implies 'poss that p'; S5: 'poss that nec that p' implies 'nec that p' [Orenstein]
     Full Idea: The five systems of propositional modal logic contain successively stronger conceptions of necessity. In S4 'it is poss that it is poss that p' implies 'it is poss that p'. In S5, 'it is poss that it is nec that p' implies 'it is nec that p'.
     From: Alex Orenstein (W.V. Quine [2002], Ch.7)
     A reaction: C.I. Lewis originated this stuff. Any serious student of modality is probably going to have to pick a system. E.g. Nathan Salmon says that the correct modal logic is even weaker than S4.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Unlike elementary logic, set theory is not complete [Orenstein]
     Full Idea: The incompleteness of set theory contrasts sharply with the completeness of elementary logic.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: This seems to be Quine's reason for abandoning the Frege-Russell logicist programme (quite apart from the problems raised by Gödel.
4. Formal Logic / G. Formal Mereology / 1. Mereology
Mereology has been exploited by some nominalists to achieve the effects of set theory [Orenstein]
     Full Idea: The theory of mereology has had a history of being exploited by nominalists to achieve some of the effects of set theory.
     From: Alex Orenstein (W.V. Quine [2002], Ch.3)
     A reaction: Some writers refer to mereology as a 'theory', and others as an area of study. This appears to be an interesting line of investigation. Orenstein says Quine and Goodman showed its limitations.
5. Theory of Logic / G. Quantification / 1. Quantification
Traditionally, universal sentences had existential import, but were later treated as conditional claims [Orenstein]
     Full Idea: In traditional logic from Aristotle to Kant, universal sentences have existential import, but Brentano and Boole construed them as universal conditionals (such as 'for anything, if it is a man, then it is mortal').
     From: Alex Orenstein (W.V. Quine [2002], Ch.2)
     A reaction: I am sympathetic to the idea that even the 'existential' quantifier should be treated as conditional, or fictional. Modern Christians may well routinely quantify over angels, without actually being committed to them.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
The substitution view of quantification says a sentence is true when there is a substitution instance [Orenstein]
     Full Idea: The substitution view of quantification explains 'there-is-an-x-such-that x is a man' as true when it has a true substitution instance, as in the case of 'Socrates is a man', so the quantifier can be read as 'it is sometimes true that'.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: The word 'true' crops up twice here. The alternative (existential-referential) view cites objects, so the substitution view is a more linguistic approach.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Klein summarised geometry as grouped together by transformations [Quine]
     Full Idea: Felix Klein's so-called 'Erlangerprogramm' in geometry involved characterizing the various branches of geometry by what transformations were irrelevant to each.
     From: Willard Quine (Natural Kinds [1969], p.137)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The whole numbers are 'natural'; 'rational' numbers include fractions; the 'reals' include root-2 etc. [Orenstein]
     Full Idea: The 'natural' numbers are the whole numbers 1, 2, 3 and so on. The 'rational' numbers consist of the natural numbers plus the fractions. The 'real' numbers include the others, plus numbers such a pi and root-2, which cannot be expressed as fractions.
     From: Alex Orenstein (W.V. Quine [2002], Ch.2)
     A reaction: The 'irrational' numbers involved entities such as root-minus-1. Philosophical discussions in ontology tend to focus on the existence of the real numbers.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
The logicists held that is-a-member-of is a logical constant, making set theory part of logic [Orenstein]
     Full Idea: The question to be posed is whether is-a-member-of should be considered a logical constant, that is, does logic include set theory. Frege, Russell and Whitehead held that it did.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: This is obviously the key element in the logicist programme. The objection seems to be that while first-order logic is consistent and complete, set theory is not at all like that, and so is part of a different world.
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
Life has a new supervenient relation, which alters its underlying physical events [Morgan,L]
     Full Idea: When some new kind of relatedness is supervenient (say at the level of life), the way in which the physical events which are involved run their course is different in virtue of its presence.
     From: Lloyd Morgan (Emergent Evolution [1923], pp.15-16), quoted by Terence Horgan - From Supervenience to Superdupervenience 1
     A reaction: This is a clear assertion of 'downward causation' at the first introduction of 'supervenience', supporting 'emergentism' about life and mind. That is, the newly-emerged feature has new causal powers that affect the physical system from outside. Wrong!
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass terms just concern spread, but other terms involve both spread and individuation [Quine]
     Full Idea: 'Yellow' and 'water' are mass terms, concerned only with spread; 'apple' and 'square' are terms of divided reference, concerned with both spread and individuation.
     From: Willard Quine (Natural Kinds [1969], p.124)
     A reaction: Would you like some apple? Pass me that water. It is helpful to see that it is a requirement of 'individuation' that is missing from terms for stuff.
7. Existence / E. Categories / 3. Proposed Categories
Just individuals in Nominalism; add sets for Extensionalism; add properties, concepts etc for Intensionalism [Orenstein]
     Full Idea: Modest ontologies are Nominalism (Goodman), admitting only concrete individuals; and Extensionalism (Quine/Davidson) which admits individuals and sets; but Intensionalists (Frege/Carnap/Church/Marcus/Kripke) may have propositions, properties, concepts.
     From: Alex Orenstein (W.V. Quine [2002], Ch.3)
     A reaction: I don't like sets, because of Idea 7035. Even the ontology of individuals could collapse dramatically (see the ideas of Merricks, e.g. 6124). The intensional items may be real enough, but needn't have a place at the ontological high table.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / a. Dispositions
Once we know the mechanism of a disposition, we can eliminate 'similarity' [Quine]
     Full Idea: Once we can legitimize a disposition term by defining the relevant similarity standard, we are apt to know the mechanism of the disposition, and so by-pass the similarity.
     From: Willard Quine (Natural Kinds [1969], p.135)
     A reaction: I love mechanisms, but can we characterise mechanisms without mentioning powers and dispositions? Quine's dream is to eliminate 'similarity'.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / d. Dispositions as occurrent
We judge things to be soluble if they are the same kind as, or similar to, things that do dissolve [Quine]
     Full Idea: Intuitively, what qualifies a thing as soluble though it never gets into water is that it is of the same kind as the things that actually did or will dissolve; it is similar to them.
     From: Willard Quine (Natural Kinds [1969], p.130)
     A reaction: If you can judge that the similar things 'will' dissolve, you can cut to the chase and judge that this thing will dissolve.
14. Science / A. Basis of Science / 3. Experiment
Science is common sense, with a sophisticated method [Quine]
     Full Idea: Sciences differ from common sense only in the degree of methodological sophistication.
     From: Willard Quine (Natural Kinds [1969], p.129)
     A reaction: Science is normal thinking about the world, but it is teamwork, with the bar set very high.
14. Science / B. Scientific Theories / 1. Scientific Theory
The Principle of Conservatism says we should violate the minimum number of background beliefs [Orenstein]
     Full Idea: The principle of conservatism in choosing between theories is a maxim of minimal mutilation, stating that of competing theories, all other things being equal, choose the one that violates the fewest background beliefs held.
     From: Alex Orenstein (W.V. Quine [2002], Ch.2)
     A reaction: In this sense, all rational people should be conservatives. The idea is a modern variant of Hume's objection to miracles (Idea 2227). A Kuhnian 'paradigm shift' is the dramatic moment when this principle no longer seems appropriate.
14. Science / C. Induction / 1. Induction
Induction is just more of the same: animal expectations [Quine]
     Full Idea: Induction is essentially only more of the same: animal expectation or habit formation.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: My working definition of induction is 'learning from experience', but that doesn't disagree with Quine. Lipton has a richer account of different types of induction. Quine's point is that it rests on resemblance.
Induction relies on similar effects following from each cause [Quine]
     Full Idea: Induction expresses our hopes that similar causes will have similar effects.
     From: Willard Quine (Natural Kinds [1969], p.125)
     A reaction: Some top philosophers are also top teachers, and Quine was one of them, in his writings. He boils it down for the layman. Once again, he is pointing to the fundamental role of the similarity relation.
14. Science / C. Induction / 5. Paradoxes of Induction / a. Grue problem
Grue is a puzzle because the notions of similarity and kind are dubious in science [Quine]
     Full Idea: What makes Goodman's example a puzzle is the dubious scientific standing of a general notion of similarity, or of kind.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Illuminating. It might be best expressed as revealing a problem with sortal terms, as employed by Geach, or by Wiggins. Grue is a bit silly, but sortals are subject to convention and culture. 'Natural' properties seem needed.
15. Nature of Minds / C. Capacities of Minds / 7. Seeing Resemblance
General terms depend on similarities among things [Quine]
     Full Idea: The usual general term, whether a common noun or a verb or an adjective, owes its generality to some resemblance among the things referred to.
     From: Willard Quine (Natural Kinds [1969], p.116)
     A reaction: Quine has a nice analysis of the basic role of similarity in a huge amount of supposedly strict scientific thought.
To learn yellow by observation, must we be told to look at the colour? [Quine]
     Full Idea: According to the 'respects' view, our learning of yellow by ostension would have depended on our first having been told or somehow apprised that it was going to be a question of color.
     From: Willard Quine (Natural Kinds [1969], p.122)
     A reaction: Quine suggests there is just one notion of similarity, and respects can be 'abstracted' afterwards. Even the ontologically ruthless Quine admits psychological abstraction!
Standards of similarity are innate, and the spacing of qualities such as colours can be mapped [Quine]
     Full Idea: A standard of similarity is in some sense innate. The spacing of qualities (such as red, pink and blue) can be explored and mapped in the laboratory by experiments. They are needed for all learning.
     From: Willard Quine (Natural Kinds [1969], p.123)
     A reaction: This reasserts Hume's original point in more scientific terms. It is one of the undeniable facts about our perceptions of qualities and properties, no matter how platonist your view of universals may be.
Similarity is just interchangeability in the cosmic machine [Quine]
     Full Idea: Things are similar to the extent that they are interchangeable parts of the cosmic machine.
     From: Willard Quine (Natural Kinds [1969], p.134)
     A reaction: This is a major idea for Quine, because it is a means to gradually eliminate the fuzzy ideas of 'resemblance' or 'similarity' or 'natural kind' from science. I love it! Two tigers are same insofar as they are substitutable.
19. Language / A. Nature of Meaning / 10. Denial of Meanings
People presume meanings exist because they confuse meaning and reference [Orenstein]
     Full Idea: A good part of the confidence people have that there are meanings rests on the confusion of meaning and reference.
     From: Alex Orenstein (W.V. Quine [2002], Ch.6)
     A reaction: An important point. Everyone assumes that sentences link to the world, but Frege shows that that is not part of meaning. Words like prepositions and conjunctions ('to', 'and') don't have 'a meaning' apart from their function and use.
19. Language / C. Assigning Meanings / 3. Predicates
Projectible predicates can be universalised about the kind to which they refer [Quine]
     Full Idea: 'Projectible' predicates are predicates F and G whose shared instances all do count, for whatever reason, towards confirmation of 'All F are G'. ….A projectible predicate is one that is true of all and only the things of a kind.
     From: Willard Quine (Natural Kinds [1969], p.115-6)
     A reaction: Both Quine and Goodman are infuriatingly brief about the introduction of this concept. 'Red' is true of all ripe tomatoes, but not 'only' of them. Hardly any predicates are true only of one kind. Is that a scholastic 'proprium'?
Three ways for 'Socrates is human' to be true are nominalist, platonist, or Montague's way [Orenstein]
     Full Idea: 'Socrates is human' is true if 1) subject referent is identical with a predicate referent (Nominalism), 2) subject reference member of the predicate set, or the subject has that property (Platonism), 3) predicate set a member of the subject set (Montague)
     From: Alex Orenstein (W.V. Quine [2002], Ch.3)
     A reaction: Orenstein offers these as alternatives to Quine's 'inscrutability of reference' thesis, which makes the sense unanalysable.
19. Language / D. Propositions / 4. Mental Propositions
If two people believe the same proposition, this implies the existence of propositions [Orenstein]
     Full Idea: If we can say 'there exists a p such that John believes p and Barbara believes p', logical forms such as this are cited as evidence for our ontological commitment to propositions.
     From: Alex Orenstein (W.V. Quine [2002], Ch.7)
     A reaction: Opponents of propositions (such as Quine) will, of course, attempt to revise the logical form to eliminate the quantification over propositions. See Orenstein's outline on p.171.
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
Quine probably regrets natural kinds now being treated as essences [Quine, by Dennett]
     Full Idea: The concept of natural kinds was reintroduced by Quine, who may now regret the way it has become a stand-in for the dubious but covertly popular concept of essences.
     From: report of Willard Quine (Natural Kinds [1969]) by Daniel C. Dennett - Consciousness Explained 12.2 n2
     A reaction: He is right that Quine would regret it, and he is right that we can't assume that there are necessary essences just because there seem to be stable natural kinds, but personally I am an essentialist, so I'm not that bothered.
If similarity has no degrees, kinds cannot be contained within one another [Quine]
     Full Idea: If similarity has no degrees there is no containing of kinds within broader kinds. If colored things are a kind, they are similar, but red things are too narrow for a kind. If red things are a kind, colored things are not similar, and it's too broad.
     From: Willard Quine (Natural Kinds [1969], p.118)
     A reaction: [compressed] I'm on Quine's side with this. We glibly talk of 'kinds', but the criteria for sorting things into kinds seems to be a mess. Quine goes on to offer a better account than the (diadic, yes-no) one rejected here.
Comparative similarity allows the kind 'colored' to contain the kind 'red' [Quine]
     Full Idea: With the triadic relation of comparative similarity, kinds can contain one another, as well as overlapping. Red and colored things can both count as kinds. Colored things all resemble one another, even though less than red things do.
     From: Willard Quine (Natural Kinds [1969], p.119)
     A reaction: [compressed] Quine claims that comparative similarity is necessary for kinds - that there be some 'foil' in a similarity - that A is more like C than B is.
26. Natural Theory / B. Natural Kinds / 3. Knowing Kinds
You can't base kinds just on resemblance, because chains of resemblance are a muddle [Quine]
     Full Idea: If kinds are based on similarity, this has the Imperfect Community problem. Red round, red wooden and round wooden things all resemble one another somehow. There may be nothing outside the set resembling them, so it meets the definition of kind.
     From: Willard Quine (Natural Kinds [1969], p.120)
     A reaction: [ref. to Goodman 'Structure' 2nd 163- , which attacks Carnap on this] This suggests an invocation of Wittgenstein's family resemblance, which won't be much help for natural kinds.
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
It is hard to see how regularities could be explained [Quine]
     Full Idea: Why there have been regularities is an obscure question, for it is hard to see what would count as an answer.
     From: Willard Quine (Natural Kinds [1969], p.126)
     A reaction: This is the standard pessimism of the 20th century Humeans, but it strikes me as comparable to the pessimism about science found in Locke and Hume. Regularities are explained all the time by scientists, though the lowest level may be hopeless.