Combining Texts

All the ideas for 'The Establishment of Scientific Semantics', 'Relations' and 'Introduction to 'Absolute Generality''

unexpand these ideas     |    start again     |     specify just one area for these texts


20 ideas

3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
'"It is snowing" is true if and only if it is snowing' is a partial definition of the concept of truth [Tarski]
     Full Idea: Statements of the form '"it is snowing" is true if and only if it is snowing' and '"the world war will begin in 1963" is true if and only if the world war will being in 1963' can be regarded as partial definitions of the concept of truth.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.404)
     A reaction: The key word here is 'partial'. Truth is defined, presumably, when every such translation from the object language has been articulated, which is presumably impossible, given the infinity of concatenated phrases possible in a sentence.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
The two best understood conceptions of set are the Iterative and the Limitation of Size [Rayo/Uzquiano]
     Full Idea: The two best understood conceptions of set are the Iterative Conception and the Limitation of Size Conception.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / m. Axiom of Separation
Some set theories give up Separation in exchange for a universal set [Rayo/Uzquiano]
     Full Idea: There are set theories that countenance exceptions to the Principle of Separation in exchange for a universal set.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.2)
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
A language: primitive terms, then definition rules, then sentences, then axioms, and finally inference rules [Tarski]
     Full Idea: For a language, we must enumerate the primitive terms, and the rules of definition for new terms. Then we must distinguish the sentences, and separate out the axioms from amng them, and finally add rules of inference.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.402)
     A reaction: [compressed] This lays down the standard modern procedure for defining a logical language. Once all of this is in place, we then add a semantics and we are in business. Natural deduction tries to do without the axioms.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
We could have unrestricted quantification without having an all-inclusive domain [Rayo/Uzquiano]
     Full Idea: The possibility of unrestricted quantification does not immediately presuppose the existence of an all-inclusive domain. One could deny an all-inclusive domain but grant that some quantifications are sometimes unrestricted.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.1)
     A reaction: Thus you can quantify over anything you like, but only from what is available. Eat what you like (in this restaurant).
Absolute generality is impossible, if there are indefinitely extensible concepts like sets and ordinals [Rayo/Uzquiano]
     Full Idea: There are doubts about whether absolute generality is possible, if there are certain concepts which are indefinitely extensible, lacking definite extensions, and yielding an ever more inclusive hierarchy. Sets and ordinals are paradigm cases.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.1)
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Perhaps second-order quantifications cover concepts of objects, rather than plain objects [Rayo/Uzquiano]
     Full Idea: If one thought of second-order quantification as quantification over first-level Fregean concepts [note: one under which only objects fall], talk of domains might be regimented as talk of first-level concepts, which are not objects.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.2)
     A reaction: That is (I take it), don't quantify over objects, but quantify over concepts, but only those under which known objects fall. One might thus achieve naïve comprehension without paradoxes. Sound like fun.
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Semantics is the concepts of connections of language to reality, such as denotation, definition and truth [Tarski]
     Full Idea: Semantics is the totality of considerations concerning concepts which express connections between expressions of a language and objects and states of affairs referred to by these expressions. Examples are denotation, satisfaction, definition and truth.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.401)
     A reaction: Interestingly, he notes that it 'is not commonly recognised' that truth is part of semantics. Nowadays truth seems to be the central concept in most semantics.
A language containing its own semantics is inconsistent - but we can use a second language [Tarski]
     Full Idea: People have not been aware that the language about which we speak need by no means coincide with the language in which we speak. ..But the language which contains its own semantics must inevitably be inconsistent.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.402)
     A reaction: It seems that Tarski was driven to propose the metalanguage approach mainly by the Liar Paradox.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A sentence is satisfied when we can assert the sentence when the variables are assigned [Tarski]
     Full Idea: Here is a partial definition of the concept of satisfaction: John and Peter satisfy the sentential function 'X and Y are brothers' if and only if John and Peter are brothers.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.405)
     A reaction: Satisfaction applies to open sentences and truth to closed sentences (with named objects). He uses the notion of total satisfaction to define truth. The example is a partial definition, not just an illustration.
Satisfaction is the easiest semantical concept to define, and the others will reduce to it [Tarski]
     Full Idea: It has been found useful in defining semantical concepts to deal first with the concept of satisfaction; both because the definition of this concept presents relatively few difficulties, and because the other semantical concepts are easily reduced to it.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.406)
     A reaction: See Idea 13339 for his explanation of satisfaction. We just say that a open sentence is 'acceptable' or 'assertible' (or even 'true') when particular values are assigned to the variables. Then sentence is then 'satisfied'.
5. Theory of Logic / K. Features of Logics / 2. Consistency
Using the definition of truth, we can prove theories consistent within sound logics [Tarski]
     Full Idea: Using the definition of truth we are in a position to carry out the proof of consistency for deductive theories in which only (materially) true sentences are (formally) provable.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.407)
     A reaction: This is evidently what Tarski saw as the most important first fruit of his new semantic theory of truth.
8. Modes of Existence / A. Relations / 1. Nature of Relations
We want the ontology of relations, not just a formal way of specifying them [Heil]
     Full Idea: A satisfying account of relations must be ontologically serious. This means refusing to rest content with abstract specifications of relations as sets of ordered n-tuples.
     From: John Heil (Relations [2009], Intro)
     A reaction: A set of ordered entities would give the extension of a relation, which wouldn't, among other things, explain co-extensive relations (if all the people to my left were also taller than me). Heil's is a general cry from the heart about formal philosophy.
Two people are indirectly related by height; the direct relation is internal, between properties [Heil]
     Full Idea: If Simmias is taller than Socrates, they are indirectly related; they are related via their possession of properties that are themselves directly - and internally - related. Hence relational truths are made true by non-relational features of the world.
     From: John Heil (Relations [2009], 'Founding')
     A reaction: This seems to be a strategy for reducing external relations to internal relations, which are intrinsic to objects, which thus reduces the ontology. Heil is not endorsing it, but cites Kit Fine 2000. The germ of this idea is in Plato.
Maybe all the other features of the world can be reduced to relations [Heil]
     Full Idea: A striking idea is that relations are ontologically primary: monadic, non-relational features of the world are constituted by relations. A view of this kind is defended by Peirce, and contemporary 'structural realists' like Ladyman.
     From: John Heil (Relations [2009], 'Relational')
     A reaction: I can't make sense of this proposal, which seems to offer relations with no relata. What is a relation? What is it made of? How do you individuate two instances of a relations, without reference to the relata?
8. Modes of Existence / A. Relations / 2. Internal Relations
In the case of 5 and 6, their relational truthmaker is just the numbers [Heil]
     Full Idea: We might say that the truthmakers for 'six is greater than five' are six and five themselves. On this view, truthmakers for one class of relational truths are non-relational features of the world.
     From: John Heil (Relations [2009], 'Founding')
     A reaction: That seems to be a good way of expressing the existence of an internal relation.
Truthmaking is a clear example of an internal relation [Heil]
     Full Idea: Truthmaking is a paradigmatic internal relation: if you have a truthbearer, a representation, and you have the world as the truthbearer represents it as being, you have truthmaking, you have the truthbearer's being true.
     From: John Heil (Relations [2009], 'Causal')
     A reaction: It is nice to have an example of an internal relation other than numbers, and closer to the concrete world. Is the relation between the world and facts about the world the same thing, or another example?
If R internally relates a and b, and you have a and b, you thereby have R [Heil]
     Full Idea: A simple way to think about internal relations is: if R internally relates a and b, then, if you have a and b, you thereby have R. If you have six and you have five, you thereby have six's being greater than five.
     From: John Heil (Relations [2009], 'External')
     A reaction: This seems to work a lot better for abstracta than for physical objects, where I am struggling to think of a parallel example. Parenthood? Temporal relations between things? Acorn and oak?
8. Modes of Existence / C. Powers and Dispositions / 4. Powers as Essence
If properties are powers, then causal relations are internal relations [Heil]
     Full Idea: On the conception that properties are powers, it is no longer obvious that causal relations are external relations. Given the powers - all the powers in play - you have the manifestations.
     From: John Heil (Relations [2009], 'Causal')
     A reaction: This also delivers on a plate the necessity felt to be in causal relations, because the relation is inevitable once you are given the relata. But can you have an accidental (rather than essential) internal relation? Not in the case of numbers.
19. Language / F. Communication / 5. Pragmatics / a. Contextual meaning
The domain of an assertion is restricted by context, either semantically or pragmatically [Rayo/Uzquiano]
     Full Idea: We generally take an assertion's domain of discourse to be implicitly restricted by context. [Note: the standard approach is that this restriction is a semantic phenomenon, but Kent Bach (2000) argues that it is a pragmatic phenomenon]
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.1)
     A reaction: I think Kent Bach is very very right about this. Follow any conversation, and ask what the domain is at any moment. The reference of a word like 'they' can drift across things, with no semantics to guide us, but only clues from context and common sense.