Combining Texts

All the ideas for 'The Establishment of Scientific Semantics', 'On Signs (damaged)' and 'Maths as a Science of Patterns'

unexpand these ideas     |    start again     |     specify just one area for these texts


16 ideas

3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
'"It is snowing" is true if and only if it is snowing' is a partial definition of the concept of truth [Tarski]
     Full Idea: Statements of the form '"it is snowing" is true if and only if it is snowing' and '"the world war will begin in 1963" is true if and only if the world war will being in 1963' can be regarded as partial definitions of the concept of truth.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.404)
     A reaction: The key word here is 'partial'. Truth is defined, presumably, when every such translation from the object language has been articulated, which is presumably impossible, given the infinity of concatenated phrases possible in a sentence.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Axioms are often affirmed simply because they produce results which have been accepted [Resnik]
     Full Idea: Many axioms have been proposed, not on the grounds that they can be directly known, but rather because they produce a desired body of previously recognised results.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.5.1)
     A reaction: This is the perennial problem with axioms - whether we start from them, or whether we deduce them after the event. There is nothing wrong with that, just as we might infer the existence of quarks because of their results.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
A language: primitive terms, then definition rules, then sentences, then axioms, and finally inference rules [Tarski]
     Full Idea: For a language, we must enumerate the primitive terms, and the rules of definition for new terms. Then we must distinguish the sentences, and separate out the axioms from amng them, and finally add rules of inference.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.402)
     A reaction: [compressed] This lays down the standard modern procedure for defining a logical language. Once all of this is in place, we then add a semantics and we are in business. Natural deduction tries to do without the axioms.
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Semantics is the concepts of connections of language to reality, such as denotation, definition and truth [Tarski]
     Full Idea: Semantics is the totality of considerations concerning concepts which express connections between expressions of a language and objects and states of affairs referred to by these expressions. Examples are denotation, satisfaction, definition and truth.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.401)
     A reaction: Interestingly, he notes that it 'is not commonly recognised' that truth is part of semantics. Nowadays truth seems to be the central concept in most semantics.
A language containing its own semantics is inconsistent - but we can use a second language [Tarski]
     Full Idea: People have not been aware that the language about which we speak need by no means coincide with the language in which we speak. ..But the language which contains its own semantics must inevitably be inconsistent.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.402)
     A reaction: It seems that Tarski was driven to propose the metalanguage approach mainly by the Liar Paradox.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A sentence is satisfied when we can assert the sentence when the variables are assigned [Tarski]
     Full Idea: Here is a partial definition of the concept of satisfaction: John and Peter satisfy the sentential function 'X and Y are brothers' if and only if John and Peter are brothers.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.405)
     A reaction: Satisfaction applies to open sentences and truth to closed sentences (with named objects). He uses the notion of total satisfaction to define truth. The example is a partial definition, not just an illustration.
Satisfaction is the easiest semantical concept to define, and the others will reduce to it [Tarski]
     Full Idea: It has been found useful in defining semantical concepts to deal first with the concept of satisfaction; both because the definition of this concept presents relatively few difficulties, and because the other semantical concepts are easily reduced to it.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.406)
     A reaction: See Idea 13339 for his explanation of satisfaction. We just say that a open sentence is 'acceptable' or 'assertible' (or even 'true') when particular values are assigned to the variables. Then sentence is then 'satisfied'.
5. Theory of Logic / K. Features of Logics / 2. Consistency
Using the definition of truth, we can prove theories consistent within sound logics [Tarski]
     Full Idea: Using the definition of truth we are in a position to carry out the proof of consistency for deductive theories in which only (materially) true sentences are (formally) provable.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.407)
     A reaction: This is evidently what Tarski saw as the most important first fruit of his new semantic theory of truth.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematical realism says that maths exists, is largely true, and is independent of proofs [Resnik]
     Full Idea: Mathematical realism is the doctrine that mathematical objects exist, that much contemporary mathematics is true, and that the existence and truth in question is independent of our constructions, beliefs and proofs.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.12.9)
     A reaction: As thus defined, I would call myself a mathematical realist, but everyone must hesitate a little at the word 'exist' and ask, how does it exist? What is it 'made of'? To say that it exists in the way that patterns exist strikes me as very helpful.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematical constants and quantifiers only exist as locations within structures or patterns [Resnik]
     Full Idea: In maths the primary subject-matter is not mathematical objects but structures in which they are arranged; our constants and quantifiers denote atoms, structureless points, or positions in structures; they have no identity outside a structure or pattern.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.1)
     A reaction: This seems to me a very promising idea for the understanding of mathematics. All mathematicians acknowledge that the recognition of patterns is basic to the subject. Even animals recognise patterns. It is natural to invent a language of patterns.
Sets are positions in patterns [Resnik]
     Full Idea: On my view, sets are positions in certain patterns.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.5)
     A reaction: I have always found the ontology of a 'set' puzzling, because they seem to depend on prior reasons why something is a member of a given set, which cannot always be random. It is hard to explain sets without mentioning properties.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Structuralism must explain why a triangle is a whole, and not a random set of points [Resnik]
     Full Idea: An objection is that structuralism fails to explain why certain mathematical patterns are unified wholes while others are not; for instance, some think that an ontological account of mathematics must explain why a triangle is not a 'random' set of points.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.4)
     A reaction: This is an indication that we are not just saying that we recognise patterns in nature, but that we also 'see' various underlying characteristics of the patterns. The obvious suggestion is that we see meta-patterns.
There are too many mathematical objects for them all to be mental or physical [Resnik]
     Full Idea: If we take mathematics at its word, there are too many mathematical objects for it to be plausible that they are all mental or physical objects.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.1)
     A reaction: No one, of course, has ever claimed that they are, but this is a good starting point for assessing the ontology of mathematics. We are going to need 'rules', which can deduce the multitudinous mathematical objects from a small ontology.
Maths is pattern recognition and representation, and its truth and proofs are based on these [Resnik]
     Full Idea: I argue that mathematical knowledge has its roots in pattern recognition and representation, and that manipulating representations of patterns provides the connection between the mathematical proof and mathematical truth.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.1)
     A reaction: The suggestion that patterns are at the basis of the ontology of mathematics is the most illuminating thought I have encountered in the area. It immediately opens up the possibility of maths being an entirely empirical subject.
Congruence is the strongest relationship of patterns, equivalence comes next, and mutual occurrence is the weakest [Resnik]
     Full Idea: Of the equivalence relationships which occur between patterns, congruence is the strongest, equivalence the next, and mutual occurrence the weakest. None of these is identity, which would require the same position.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.3)
     A reaction: This gives some indication of how an account of mathematics as a science of patterns might be built up. Presumably the recognition of these 'degrees of strength' cannot be straightforward observation, but will need an a priori component?
14. Science / C. Induction / 3. Limits of Induction
From the fact that some men die, we cannot infer that they all do [Philodemus]
     Full Idea: There is no necessary inference, from the fact that men familiar to us die when pierced through the heart, that all men do.
     From: Philodemus (On Signs (damaged) [c.50 BCE], 1.3)
     A reaction: This is scepticism about the logic of induction, long before David Hume. This is said to be a Stoic argument against Epicureans - though on the whole Stoics are not keen on scepticism.