Combining Texts

All the ideas for 'Understanding and Essence', 'Infinity: Quest to Think the Unthinkable' and 'Replies on 'Limits of Abstraction''

unexpand these ideas     |    start again     |     specify just one area for these texts


42 ideas

1. Philosophy / F. Analytic Philosophy / 4. Conceptual Analysis
If 2-D conceivability can a priori show possibilities, this is a defence of conceptual analysis [Vaidya]
     Full Idea: Chalmers' two-dimensional conceivability account of possibility offers a defence of a priori conceptual analysis, and foundations on which a priori philosophy can be furthered.
     From: Anand Vaidya (Understanding and Essence [2010], Intro)
     A reaction: I think I prefer Williamson's more scientific account of possibility through counterfactual conceivability, rather than Chalmers' optimistic a priori account. Deep topic, though, and the jury is still out.
1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Concern for rigour can get in the way of understanding phenomena [Fine,K]
     Full Idea: It is often the case that the concern for rigor gets in the way of a true understanding of the phenomena to be explained.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
     A reaction: This is a counter to Timothy Williamson's love affair with rigour in philosophy. It strikes me as the big current question for analytical philosophy - of whether the intense pursuit of 'rigour' will actually deliver the wisdom we all seek.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A set is 'well-ordered' if every subset has a first element [Clegg]
     Full Idea: For a set to be 'well-ordered' it is required that every subset of the set has a first element.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory made a closer study of infinity possible [Clegg]
     Full Idea: Set theory made a closer study of infinity possible.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
Any set can always generate a larger set - its powerset, of subsets [Clegg]
     Full Idea: The idea of the 'power set' means that it is always possible to generate a bigger one using only the elements of that set, namely the set of all its subsets.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.14)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: Two sets are equal if and only if they have the same elements [Clegg]
     Full Idea: Axiom of Extension: Two sets are equal if and only if they have the same elements.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: For any two sets there exists a set to which they both belong [Clegg]
     Full Idea: Axiom of Pairing: For any two sets there exists a set to which they both belong. So you can make a set out of two other sets.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Unions: There is a set of all the elements which belong to at least one set in a collection [Clegg]
     Full Idea: Axiom of Unions: For every collection of sets there exists a set that contains all the elements that belong to at least one of the sets in the collection.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There exists a set of the empty set and the successor of each element [Clegg]
     Full Idea: Axiom of Infinity: There exists a set containing the empty set and the successor of each of its elements.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: This is rather different from the other axioms because it contains the notion of 'successor', though that can be generated by an ordering procedure.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Powers: All the subsets of a given set form their own new powerset [Clegg]
     Full Idea: Axiom of Powers: For each set there exists a collection of sets that contains amongst its elements all the subsets of the given set.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: Obviously this must include the whole of the base set (i.e. not just 'proper' subsets), otherwise the new set would just be a duplicate of the base set.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: For every set a mechanism will choose one member of any non-empty subset [Clegg]
     Full Idea: Axiom of Choice: For every set we can provide a mechanism for choosing one member of any non-empty subset of the set.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: This axiom is unusual because it makes the bold claim that such a 'mechanism' can always be found. Cohen showed that this axiom is separate. The tricky bit is choosing from an infinite subset.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Axiom of Existence: there exists at least one set [Clegg]
     Full Idea: Axiom of Existence: there exists at least one set. This may be the empty set, but you need to start with something.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: a condition applied to a set will always produce a new set [Clegg]
     Full Idea: Axiom of Specification: For every set and every condition, there corresponds a set whose elements are exactly the same as those elements of the original set for which the condition is true. So the concept 'number is even' produces a set from the integers.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: What if the condition won't apply to the set? 'Number is even' presumably won't produce a set if it is applied to a set of non-numbers.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
There is no stage at which we can take all the sets to have been generated [Fine,K]
     Full Idea: There is no stage at which we can take all the sets to have been generated, since the set of all those sets which have been generated at a given stage will itself give us something new.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 1)
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
We might combine the axioms of set theory with the axioms of mereology [Fine,K]
     Full Idea: We might combine the standard axioms of set theory with the standard axioms of mereology.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 1)
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
If you ask what F the second-order quantifier quantifies over, you treat it as first-order [Fine,K]
     Full Idea: We are tempted to ask of second-order quantifiers 'what are you quantifying over?', or 'when you say "for some F" then what is the F?', but these questions already presuppose that the quantifiers are first-order.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005])
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Assigning an entity to each predicate in semantics is largely a technical convenience [Fine,K]
     Full Idea: In doing semantics we normally assign some appropriate entity to each predicate, but this is largely for technical convenience.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics can be 'pure' (unapplied), 'real' (physically grounded); or 'applied' (just applicable) [Clegg]
     Full Idea: Three views of mathematics: 'pure' mathematics, where it doesn't matter if it could ever have any application; 'real' mathematics, where every concept must be physically grounded; and 'applied' mathematics, using the non-real if the results are real.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.17)
     A reaction: Very helpful. No one can deny the activities of 'pure' mathematics, but I think it is undeniable that the origins of the subject are 'real' (rather than platonic). We do economics by pretending there are concepts like the 'average family'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Dedekind cuts lead to the bizarre idea that there are many different number 1's [Fine,K]
     Full Idea: Because of Dedekind's definition of reals by cuts, there is a bizarre modern doctrine that there are many 1's - the natural number 1, the rational number 1, the real number 1, and even the complex number 1.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
     A reaction: See Idea 10572.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal number is defined by the set that comes before it [Clegg]
     Full Idea: You can think of an ordinal number as being defined by the set that comes before it, so, in the non-negative integers, ordinal 5 is defined as {0, 1, 2, 3, 4}.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
Beyond infinity cardinals and ordinals can come apart [Clegg]
     Full Idea: With ordinary finite numbers ordinals and cardinals are in effect the same, but beyond infinity it is possible for two sets to have the same cardinality but different ordinals.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Transcendental numbers can't be fitted to finite equations [Clegg]
     Full Idea: The 'transcendental numbers' are those irrationals that can't be fitted to a suitable finite equation, of which π is far and away the best known.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch. 6)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
Why should a Dedekind cut correspond to a number? [Fine,K]
     Full Idea: By what right can Dedekind suppose that there is a number corresponding to any pair of irrationals that constitute an irrational cut?
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / k. Imaginary numbers
By adding an axis of imaginary numbers, we get the useful 'number plane' instead of number line [Clegg]
     Full Idea: The realisation that brought 'i' into the toolkit of physicists and engineers was that you could extend the 'number line' into a new dimension, with an imaginary number axis at right angles to it. ...We now have a 'number plane'.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.12)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Unless we know whether 0 is identical with the null set, we create confusions [Fine,K]
     Full Idea: What is the union of the singleton {0}, of zero, and the singleton {φ}, of the null set? Is it the one-element set {0}, or the two-element set {0, φ}? Unless the question of identity between 0 and φ is resolved, we cannot say.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
Either lack of zero made early mathematics geometrical, or the geometrical approach made zero meaningless [Clegg]
     Full Idea: It is a chicken-and-egg problem, whether the lack of zero forced forced classical mathematicians to rely mostly on a geometric approach to mathematics, or the geometric approach made 0 a meaningless concept, but the two remain strongly tied together.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch. 6)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's account of infinities has the shaky foundation of irrational numbers [Clegg]
     Full Idea: As far as Kronecker was concerned, Cantor had built a whole structure on the irrational numbers, and so that structure had no foundation at all.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis is independent of the axioms of set theory [Clegg]
     Full Idea: Paul Cohen showed that the Continuum Hypothesis is independent of the axioms of set theory.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
The 'continuum hypothesis' says aleph-one is the cardinality of the reals [Clegg]
     Full Idea: The 'continuum hypothesis' says that aleph-one is the cardinality of the rational and irrational numbers.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.14)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Set-theoretic imperialists think sets can represent every mathematical object [Fine,K]
     Full Idea: Set-theoretic imperialists think that it must be possible to represent every mathematical object as a set.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 1)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Logicists say mathematics can be derived from definitions, and can be known that way [Fine,K]
     Full Idea: Logicists traditionally claim that the theorems of mathematics can be derived by logical means from the relevant definitions of the terms, and that these theorems are epistemically innocent (knowable without Kantian intuition or empirical confirmation).
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / b. Levels of abstraction
A generative conception of abstracts proposes stages, based on concepts of previous objects [Fine,K]
     Full Idea: It is natural to have a generative conception of abstracts (like the iterative conception of sets). The abstracts are formed at stages, with the abstracts formed at any given stage being the abstracts of those concepts of objects formed at prior stages.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 1)
     A reaction: See 10567 for Fine's later modification. This may not guarantee 'levels', but it implies some sort of conceptual priority between abstract entities.
9. Objects / D. Essence of Objects / 7. Essence and Necessity / c. Essentials are necessary
Essential properties are necessary, but necessary properties may not be essential [Vaidya]
     Full Idea: When P is an essence of O it follows that P is a necessary property of O. However, P can be a necessary property of O without being an essence of O.
     From: Anand Vaidya (Understanding and Essence [2010], 'Knowledge')
     A reaction: This summarises the Kit Fine view with which I sympathise. However, I dislike presenting essence as a mere list of properties, which is only done for the convenience of logicians. But was Jessie Owens a great athlete after he lost his speed?
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / a. Conceivable as possible
Define conceivable; how reliable is it; does inconceivability help; and what type of possibility results? [Vaidya]
     Full Idea: Conceivability as evidence for possibility needs four interpretations. How is 'conceivable' defined or explained? How strongly is the idea endorsed? How does inconceivability fit in? And what kind of possibility (logical, physical etc) is implied?
     From: Anand Vaidya (Understanding and Essence [2010], 'Application')
     A reaction: [some compression] Williamson's counterfactual account helps with the first one. The strength largely depends on whether your conceptions are well informed. Inconceivability may be your own failure. All types of possibility can be implied.
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / c. Possible but inconceivable
Inconceivability (implying impossibility) may be failure to conceive, or incoherence [Vaidya]
     Full Idea: If we aim to derive impossibility from inconceivability, we may either face a failure to conceive something, or arrive at a state of incoherence in conceiving.
     From: Anand Vaidya (Understanding and Essence [2010], 'Application')
     A reaction: [summary] Thus I can't manage to conceive a multi-dimensional hypercube, but I don't even try to conceive a circular square. In both cases, we must consider whether the inconceivability results from our own inadequacy, rather than from the facts.
11. Knowledge Aims / A. Knowledge / 2. Understanding
Can you possess objective understanding without realising it? [Vaidya]
     Full Idea: Is it possible for an individual to possess objectual understanding without knowing they possess the objectual understanding?
     From: Anand Vaidya (Understanding and Essence [2010], 'Objections')
     A reaction: Hm. A nice new question to loose sleep over. We can't demand a regress of meta-understandings, so at some point you just understand. Birds understand nests. Equivalent: can you understand P, but can't explain P? Skilled, but inarticulate.
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / b. Gettier problem
Gettier deductive justifications split the justification from the truthmaker [Vaidya]
     Full Idea: In the Gettier case of deductive justification, what we have is a separation between the source of the justification and the truthmaker for the belief.
     From: Anand Vaidya (Understanding and Essence [2010], 'Distinction')
     A reaction: A very illuminating insight into the Gettier problem. As a fan of truthmakers, I'm wondering if this might quickly solve it.
In a disjunctive case, the justification comes from one side, and the truth from the other [Vaidya]
     Full Idea: The disjunctive belief that 'either Jones owns a Ford or Brown is in Barcelona', which Smith believes, derives its justification from the left disjunct, and its truth from the right disjunct.
     From: Anand Vaidya (Understanding and Essence [2010], 'Application')
     A reaction: The example is from Gettier's original article. Have we finally got a decent account of the original Gettier problem, after fifty years of debate? Philosophical moves with delightful slowness.
18. Thought / C. Content / 1. Content
Aboutness is always intended, and cannot be accidental [Vaidya]
     Full Idea: A representation cannot accidentally be about an object. Aboutness is in general an intentional relation.
     From: Anand Vaidya (Understanding and Essence [2010], 'Objections')
     A reaction: 'Intentional' with a 't', not with an 's'. This strikes me as important. Critics dislike the idea of 'representation' because if you passively place a representation and its subject together, what makes the image do the representing job? Answer: I do!
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstraction-theoretic imperialists think Fregean abstracts can represent every mathematical object [Fine,K]
     Full Idea: Abstraction-theoretic imperialists think that it must be possible to represent every mathematical object as a Fregean abstract.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 1)
We can combine ZF sets with abstracts as urelements [Fine,K]
     Full Idea: I propose a unified theory which is a version of ZF or ZFC with urelements, where the urelements are taken to be the abstracts.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 1)
We can create objects from conditions, rather than from concepts [Fine,K]
     Full Idea: Instead of viewing the abstracts (or sums) as being generated from objects, via the concepts from which they are defined, we can take them to be generated from conditions. The number of the universe ∞ is the number of self-identical objects.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 1)
     A reaction: The point is that no particular object is now required to make the abstraction.