Combining Texts

All the ideas for 'Understanding and Essence', 'The Intrinsic Quality of Experience' and 'Introduction to Mathematical Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

1. Philosophy / F. Analytic Philosophy / 4. Conceptual Analysis
If 2-D conceivability can a priori show possibilities, this is a defence of conceptual analysis [Vaidya]
     Full Idea: Chalmers' two-dimensional conceivability account of possibility offers a defence of a priori conceptual analysis, and foundations on which a priori philosophy can be furthered.
     From: Anand Vaidya (Understanding and Essence [2010], Intro)
     A reaction: I think I prefer Williamson's more scientific account of possibility through counterfactual conceivability, rather than Chalmers' optimistic a priori account. Deep topic, though, and the jury is still out.
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Post proved the consistency of propositional logic in 1921 [Walicki]
     Full Idea: A proof of the consistency of propositional logic was given by Emil Post in 1921.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2.1)
Propositional language can only relate statements as the same or as different [Walicki]
     Full Idea: Propositional language is very rudimentary and has limited powers of expression. The only relation between various statements it can handle is that of identity and difference. As are all the same, but Bs can be different from As.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 7 Intro)
     A reaction: [second sentence a paraphrase] In predicate logic you could represent two statements as being the same except for one element (an object or predicate or relation or quantifier).
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Boolean connectives are interpreted as functions on the set {1,0} [Walicki]
     Full Idea: Boolean connectives are interpreted as functions on the set {1,0}.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 5.1)
     A reaction: 1 and 0 are normally taken to be true (T) and false (F). Thus the functions output various combinations of true and false, which are truth tables.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is useful for defining sets by properties, when the members are not yet known [Walicki]
     Full Idea: The empty set is mainly a mathematical convenience - defining a set by describing the properties of its members in an involved way, we may not know from the very beginning what its members are.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
The empty set avoids having to take special precautions in case members vanish [Walicki]
     Full Idea: Without the assumption of the empty set, one would often have to take special precautions for the case where a set happened to contain no elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
     A reaction: Compare the introduction of the concept 'zero', where special precautions are therefore required. ...But other special precautions are needed without zero. Either he pays us, or we pay him, or ...er. Intersecting sets need the empty set.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
Ordinals play the central role in set theory, providing the model of well-ordering [Walicki]
     Full Idea: Ordinals play the central role in set theory, providing the paradigmatic well-orderings.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: When you draw the big V of the iterative hierarchy of sets (built from successive power sets), the ordinals are marked as a single line up the middle, one ordinal for each level.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
To determine the patterns in logic, one must identify its 'building blocks' [Walicki]
     Full Idea: In order to construct precise and valid patterns of arguments one has to determine their 'building blocks'. One has to identify the basic terms, their kinds and means of combination.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History Intro)
     A reaction: A deceptively simple and important idea. All explanation requires patterns and levels, and it is the idea of building blocks which makes such things possible. It is right at the centre of our grasp of everything.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' of a theory specifies interpreting a language in a domain to make all theorems true [Walicki]
     Full Idea: A specification of a domain of objects, and of the rules for interpreting the symbols of a logical language in this domain such that all the theorems of the logical theory are true is said to be a 'model' of the theory.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.1.3)
     A reaction: The basic ideas of this emerged 1915-30, but it needed Tarski's account of truth to really get it going.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The L-S Theorem says no theory (even of reals) says more than a natural number theory [Walicki]
     Full Idea: The L-S Theorem is ...a shocking result, since it implies that any consistent formal theory of everything - even about biology, physics, sets or the real numbers - can just as well be understood as being about natural numbers. It says nothing more.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2)
     A reaction: Illuminating. Particularly the point that no theory about the real numbers can say anything more than a theory about the natural numbers. So the natural numbers contain all the truths we can ever express? Eh?????
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
A compact axiomatisation makes it possible to understand a field as a whole [Walicki]
     Full Idea: Having such a compact [axiomatic] presentation of a complicated field [such as Euclid's], makes it possible to relate not only to particular theorems but also to the whole field as such.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
Axiomatic systems are purely syntactic, and do not presuppose any interpretation [Walicki]
     Full Idea: Axiomatic systems, their primitive terms and proofs, are purely syntactic, that is, do not presuppose any interpretation. ...[142] They never address the world directly, but address a possible semantic model which formally represents the world.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinals are transitive sets of transitive sets; or transitive sets totally ordered by inclusion [Walicki]
     Full Idea: An ordinal can be defined as a transitive set of transitive sets, or else, as a transitive set totally ordered by set inclusion.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Ordinals are the empty set, union with the singleton, and any arbitrary union of ordinals [Walicki]
     Full Idea: The collection of ordinals is defined inductively: Basis: the empty set is an ordinal; Ind: for an ordinal x, the union with its singleton is also an ordinal; and any arbitrary (possibly infinite) union of ordinals is an ordinal.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: [symbolism translated into English] Walicki says they are called 'ordinal numbers', but are in fact a set.
The union of finite ordinals is the first 'limit ordinal'; 2ω is the second... [Walicki]
     Full Idea: We can form infinite ordinals by taking unions of ordinals. We can thus form 'limit ordinals', which have no immediate predecessor. ω is the first (the union of all finite ordinals), ω + ω = sω is second, 3ω the third....
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Two infinite ordinals can represent a single infinite cardinal [Walicki]
     Full Idea: There may be several ordinals for the same cardinality. ...Two ordinals can represent different ways of well-ordering the same number (aleph-0) of elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: This only applies to infinite ordinals and cardinals. For the finite, the two coincide. In infinite arithmetic the rules are different.
Members of ordinals are ordinals, and also subsets of ordinals [Walicki]
     Full Idea: Every member of an ordinal is itself an ordinal, and every ordinal is a transitive set (its members are also its subsets; a member of a member of an ordinal is also a member of the ordinal).
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
In non-Euclidean geometry, all Euclidean theorems are valid that avoid the fifth postulate [Walicki]
     Full Idea: Since non-Euclidean geometry preserves all Euclid's postulates except the fifth one, all the theorems derived without the use of the fifth postulate remain valid.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Inductive proof depends on the choice of the ordering [Walicki]
     Full Idea: Inductive proof is not guaranteed to work in all cases and, particularly, it depends heavily on the choice of the ordering.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.1.1)
     A reaction: There has to be an well-founded ordering for inductive proofs to be possible.
9. Objects / D. Essence of Objects / 7. Essence and Necessity / c. Essentials are necessary
Essential properties are necessary, but necessary properties may not be essential [Vaidya]
     Full Idea: When P is an essence of O it follows that P is a necessary property of O. However, P can be a necessary property of O without being an essence of O.
     From: Anand Vaidya (Understanding and Essence [2010], 'Knowledge')
     A reaction: This summarises the Kit Fine view with which I sympathise. However, I dislike presenting essence as a mere list of properties, which is only done for the convenience of logicians. But was Jessie Owens a great athlete after he lost his speed?
10. Modality / A. Necessity / 2. Nature of Necessity
Scotus based modality on semantic consistency, instead of on what the future could allow [Walicki]
     Full Idea: The link between time and modality was severed by Duns Scotus, who proposed a notion of possibility based purely on the notion of semantic consistency. 'Possible' means for him logically possible, that is, not involving contradiction.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History B.4)
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / a. Conceivable as possible
Define conceivable; how reliable is it; does inconceivability help; and what type of possibility results? [Vaidya]
     Full Idea: Conceivability as evidence for possibility needs four interpretations. How is 'conceivable' defined or explained? How strongly is the idea endorsed? How does inconceivability fit in? And what kind of possibility (logical, physical etc) is implied?
     From: Anand Vaidya (Understanding and Essence [2010], 'Application')
     A reaction: [some compression] Williamson's counterfactual account helps with the first one. The strength largely depends on whether your conceptions are well informed. Inconceivability may be your own failure. All types of possibility can be implied.
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / c. Possible but inconceivable
Inconceivability (implying impossibility) may be failure to conceive, or incoherence [Vaidya]
     Full Idea: If we aim to derive impossibility from inconceivability, we may either face a failure to conceive something, or arrive at a state of incoherence in conceiving.
     From: Anand Vaidya (Understanding and Essence [2010], 'Application')
     A reaction: [summary] Thus I can't manage to conceive a multi-dimensional hypercube, but I don't even try to conceive a circular square. In both cases, we must consider whether the inconceivability results from our own inadequacy, rather than from the facts.
11. Knowledge Aims / A. Knowledge / 2. Understanding
Can you possess objective understanding without realising it? [Vaidya]
     Full Idea: Is it possible for an individual to possess objectual understanding without knowing they possess the objectual understanding?
     From: Anand Vaidya (Understanding and Essence [2010], 'Objections')
     A reaction: Hm. A nice new question to loose sleep over. We can't demand a regress of meta-understandings, so at some point you just understand. Birds understand nests. Equivalent: can you understand P, but can't explain P? Skilled, but inarticulate.
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / b. Gettier problem
Gettier deductive justifications split the justification from the truthmaker [Vaidya]
     Full Idea: In the Gettier case of deductive justification, what we have is a separation between the source of the justification and the truthmaker for the belief.
     From: Anand Vaidya (Understanding and Essence [2010], 'Distinction')
     A reaction: A very illuminating insight into the Gettier problem. As a fan of truthmakers, I'm wondering if this might quickly solve it.
In a disjunctive case, the justification comes from one side, and the truth from the other [Vaidya]
     Full Idea: The disjunctive belief that 'either Jones owns a Ford or Brown is in Barcelona', which Smith believes, derives its justification from the left disjunct, and its truth from the right disjunct.
     From: Anand Vaidya (Understanding and Essence [2010], 'Application')
     A reaction: The example is from Gettier's original article. Have we finally got a decent account of the original Gettier problem, after fifty years of debate? Philosophical moves with delightful slowness.
15. Nature of Minds / B. Features of Minds / 5. Qualia / b. Qualia and intentionality
Qualities of experience are just representational aspects of experience ('Representationalism') [Harman, by Burge]
     Full Idea: Harman defended what came to be known as 'representationalism' - the view that qualitative aspects of experience are nothing other than representational aspects.
     From: report of Gilbert Harman (The Intrinsic Quality of Experience [1990]) by Tyler Burge - Philosophy of Mind: 1950-2000 p.459
     A reaction: Functionalists like Harman have a fairly intractable problem with the qualities of experience, and this may be clutching at straws. What does 'represent' mean? How is the representation achieved? Why that particular quale?
18. Thought / C. Content / 1. Content
Aboutness is always intended, and cannot be accidental [Vaidya]
     Full Idea: A representation cannot accidentally be about an object. Aboutness is in general an intentional relation.
     From: Anand Vaidya (Understanding and Essence [2010], 'Objections')
     A reaction: 'Intentional' with a 't', not with an 's'. This strikes me as important. Critics dislike the idea of 'representation' because if you passively place a representation and its subject together, what makes the image do the representing job? Answer: I do!