Combining Texts

All the ideas for 'German Philosophy: a very short introduction', 'Russell's Metaphysical Logic' and 'On Formally Undecidable Propositions'

unexpand these ideas     |    start again     |     specify just one area for these texts


33 ideas

2. Reason / D. Definition / 8. Impredicative Definition
'Impredictative' definitions fix a class in terms of the greater class to which it belongs [Linsky,B]
     Full Idea: The ban on 'impredicative' definitions says you can't define a class in terms of a totality to which that class must be seen as belonging.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 1)
     A reaction: So that would be defining 'citizen' in terms of the community to which the citizen belongs? If you are asked to define 'community' and 'citizen' together, where do you start? But how else can it be done? Russell's Reducibility aimed to block this.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Prior to Gödel we thought truth in mathematics consisted in provability [Gödel, by Quine]
     Full Idea: Gödel's proof wrought an abrupt turn in the philosophy of mathematics. We had supposed that truth, in mathematics, consisted in provability.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Willard Quine - Forward to Gödel's Unpublished
     A reaction: This explains the crisis in the early 1930s, which Tarski's theory appeared to solve.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Gödel show that the incompleteness of set theory was a necessity [Gödel, by Hallett,M]
     Full Idea: Gödel's incompleteness results of 1931 show that all axiom systems precise enough to satisfy Hilbert's conception are necessarily incomplete.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Michael Hallett - Introduction to Zermelo's 1930 paper p.1215
     A reaction: [Hallett italicises 'necessarily'] Hilbert axioms have to be recursive - that is, everything in the system must track back to them.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Reducibility says any impredicative function has an appropriate predicative replacement [Linsky,B]
     Full Idea: The Axiom of Reducibility avoids impredicativity, by asserting that for any predicate of given arguments defined by quantifying over higher-order functions or classes, there is another co-extensive but predicative function of the same type of arguments.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 1)
     A reaction: Eventually the axiom seemed too arbitrary, and was dropped. Linsky's book explores it.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Definite descriptions theory eliminates the King of France, but not the Queen of England [Linsky,B]
     Full Idea: The theory of definite descriptions may eliminate apparent commitment to such entities as the present King of France, but certainly not to the present Queen of England.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 7.3)
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionalism means what is true of a function is true of coextensive functions [Linsky,B]
     Full Idea: With the principle of extensionality anything true of one propositional functions will be true of every coextensive one.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 6.3)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The limitations of axiomatisation were revealed by the incompleteness theorems [Gödel, by Koellner]
     Full Idea: The inherent limitations of the axiomatic method were first brought to light by the incompleteness theorems.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Koellner - On the Question of Absolute Undecidability 1.1
5. Theory of Logic / K. Features of Logics / 2. Consistency
Second Incompleteness: nice theories can't prove their own consistency [Gödel, by Smith,P]
     Full Idea: Second Incompleteness Theorem: roughly, nice theories that include enough basic arithmetic can't prove their own consistency.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 1.5
     A reaction: On the face of it, this sounds less surprising than the First Theorem. Philosophers have often noticed that it seems unlikely that you could use reason to prove reason, as when Descartes just relies on 'clear and distinct ideas'.
5. Theory of Logic / K. Features of Logics / 3. Soundness
If soundness can't be proved internally, 'reflection principles' can be added to assert soundness [Gödel, by Halbach/Leigh]
     Full Idea: Gödel showed PA cannot be proved consistent from with PA. But 'reflection principles' can be added, which are axioms partially expressing the soundness of PA, by asserting what is provable. A Global Reflection Principle asserts full soundness.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Halbach,V/Leigh,G.E. - Axiomatic Theories of Truth (2013 ver) 1.2
     A reaction: The authors point out that this needs a truth predicate within the language, so disquotational truth won't do, and there is a motivation for an axiomatic theory of truth.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
The undecidable sentence can be decided at a 'higher' level in the system [Gödel]
     Full Idea: My undecidable arithmetical sentence ...is not at all absolutely undecidable; rather, one can always pass to 'higher' systems in which the sentence in question is decidable.
     From: Kurt Gödel (On Formally Undecidable Propositions [1931]), quoted by Peter Koellner - On the Question of Absolute Undecidability 1.1
     A reaction: [a 1931 MS] He says the reals are 'higher' than the naturals, and the axioms of set theory are higher still. The addition of a truth predicate is part of what makes the sentence become decidable.
Gödel's First Theorem sabotages logicism, and the Second sabotages Hilbert's Programme [Smith,P on Gödel]
     Full Idea: Where Gödel's First Theorem sabotages logicist ambitions, the Second Theorem sabotages Hilbert's Programme.
     From: comment on Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 36
     A reaction: Neo-logicism (Crispin Wright etc.) has a strategy for evading the First Theorem.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
There can be no single consistent theory from which all mathematical truths can be derived [Gödel, by George/Velleman]
     Full Idea: Gödel's far-reaching work on the nature of logic and formal systems reveals that there can be no single consistent theory from which all mathematical truths can be derived.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.8
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
First Incompleteness: arithmetic must always be incomplete [Gödel, by Smith,P]
     Full Idea: First Incompleteness Theorem: any properly axiomatised and consistent theory of basic arithmetic must remain incomplete, whatever our efforts to complete it by throwing further axioms into the mix.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 1.2
     A reaction: This is because it is always possible to formulate a well-formed sentence which is not provable within the theory.
Gödel showed that arithmetic is either incomplete or inconsistent [Gödel, by Rey]
     Full Idea: Gödel's theorem states that either arithmetic is incomplete, or it is inconsistent.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Georges Rey - Contemporary Philosophy of Mind 8.7
Arithmetical truth cannot be fully and formally derived from axioms and inference rules [Gödel, by Nagel/Newman]
     Full Idea: The vast continent of arithmetical truth cannot be brought into systematic order by laying down a fixed set of axioms and rules of inference from which every true mathematical statement can be formally derived. For some this was a shocking revelation.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by E Nagel / JR Newman - Gödel's Proof VII.C
     A reaction: Good news for philosophy, I'd say. The truth cannot be worked out by mechanical procedures, so it needs the subtle and intuitive intelligence of your proper philosopher (Parmenides is the role model) to actually understand reality.
Gödel's Second says that semantic consequence outruns provability [Gödel, by Hanna]
     Full Idea: Gödel's Second Incompleteness Theorem says that true unprovable sentences are clearly semantic consequences of the axioms in the sense that they are necessarily true if the axioms are true. So semantic consequence outruns provability.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Robert Hanna - Rationality and Logic 5.3
First Incompleteness: a decent consistent system is syntactically incomplete [Gödel, by George/Velleman]
     Full Idea: First Incompleteness Theorem: If S is a sufficiently powerful formal system, then if S is consistent then S is syntactically incomplete.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Gödel found a single sentence, effectively saying 'I am unprovable in S', which is neither provable nor refutable in S.
Second Incompleteness: a decent consistent system can't prove its own consistency [Gödel, by George/Velleman]
     Full Idea: Second Incompleteness Theorem: If S is a sufficiently powerful formal system, then if S is consistent then S cannot prove its own consistency
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: This seems much less surprising than the First Theorem (though it derives from it). It was always kind of obvious that you couldn't use reason to prove that reason works (see, for example, the Cartesian Circle).
There is a sentence which a theory can show is true iff it is unprovable [Gödel, by Smith,P]
     Full Idea: The original Gödel construction gives us a sentence that a theory shows is true if and only if it satisfies the condition of being unprovable-in-that-theory.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 20.5
'This system can't prove this statement' makes it unprovable either way [Gödel, by Clegg]
     Full Idea: An approximation of Gödel's Theorem imagines a statement 'This system of mathematics can't prove this statement true'. If the system proves the statement, then it can't prove it. If the statement can't prove the statement, clearly it still can't prove it.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15
     A reaction: Gödel's contribution to this simple idea seems to be a demonstration that formal arithmetic is capable of expressing such a statement.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
The task of logicism was to define by logic the concepts 'number', 'successor' and '0' [Linsky,B]
     Full Idea: The problem for logicism was to find definitions of the primitive notions of Peano's theory, number, successor and 0, in terms of logical notions, so that the postulates could then be derived by logic alone.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 7)
     A reaction: Both Frege and Russell defined numbers as equivalence classes. Successor is easily defined (in various ways) in set theory. An impossible set can exemplify zero. The trouble for logicism is this all relies on sets.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Higher types are needed to distinguished intensional phenomena which are coextensive [Linsky,B]
     Full Idea: The higher types are needed for intensional phenomena, cases where the same class is picked out by distinct propositional functions.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 6.4)
     A reaction: I take it that in this way 'x is renate' can be distinguished from 'x is cordate', a task nowadays performed by possible worlds.
Types are 'ramified' when there are further differences between the type of quantifier and its range [Linsky,B]
     Full Idea: The types is 'ramified' because there are further differences between the type of a function defined in terms of a quantifier ranging over other functions and the type of those other functions, despite the functions applying to the same simple type.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 1)
     A reaction: Not sure I understand this, but it evidently created difficulties for dealing with actual mathematics, and Ramsey showed how you could manage without the ramifications.
The ramified theory subdivides each type, according to the range of the variables [Linsky,B]
     Full Idea: The original ramified theory of types ...furthern subdivides each of the types of the 'simple' theory according to the range of the bound variables used in the definition of each propositional function.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 6)
     A reaction: For a non-intiate like me it certainly sounds disappointing that such a bold and neat theory because a tangle of complications. Ramsey and Russell in the 1920s seem to have dropped the ramifications.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Did logicism fail, when Russell added three nonlogical axioms, to save mathematics? [Linsky,B]
     Full Idea: It is often thought that Logicism was a failure, because after Frege's contradiction, Russell required obviously nonlogical principles, in order to develop mathematics. The axioms of Reducibility, Infinity and Choice are cited.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 6)
     A reaction: Infinity and Choice remain as axioms of the standard ZFC system of set theory, which is why set theory is always assumed to be 'up to its neck' in ontological commitments. Linsky argues that Russell saw ontology in logic.
For those who abandon logicism, standard set theory is a rival option [Linsky,B]
     Full Idea: ZF set theory is seen as a rival to logicism as a foundational scheme. Set theory is for those who have given up the project of reducing mathematics to logic.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 6.1)
     A reaction: Presumably there are other rivals. Set theory has lots of ontological commitments. One could start at the other end, and investigate the basic ontological commitments of arithmetic. I have no idea what those might be.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Realists are happy with impredicative definitions, which describe entities in terms of other existing entities [Gödel, by Shapiro]
     Full Idea: Gödel defended impredicative definitions on grounds of ontological realism. From that perspective, an impredicative definition is a description of an existing entity with reference to other existing entities.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Stewart Shapiro - Thinking About Mathematics 5.3
     A reaction: This is why constructivists must be absolutely precise about definition, where realists only have to do their best. Compare building a car with painting a landscape.
8. Modes of Existence / B. Properties / 11. Properties as Sets
Construct properties as sets of objects, or say an object must be in the set to have the property [Linsky,B]
     Full Idea: Rather than directly constructing properties as sets of objects and proving neat facts about properties by proxy, we can assert biconditionals, such as that an object has a property if and only if it is in a certain set.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 7.6)
     A reaction: Linsky is describing Russell's method of logical construction. I'm not clear what is gained by this move, but at least it is a variant of the usual irritating expression of properties as sets of objects.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Transcendental idealism aims to explain objectivity through subjectivity [Bowie]
     Full Idea: The aim of transcendental idealism is to give a basis for objectivity in terms of subjectivity.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010], 1)
     A reaction: Hume used subjectivity to undermine the findings of objectivity. There was then no return to naive objectivity. Kant's aim then was to thwart global scepticism. Post-Kantians feared that he had failed.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / d. Absolute idealism
The Idealists saw the same unexplained spontaneity in Kant's judgements and choices [Bowie]
     Full Idea: The Idealist saw in Kant that knowledge, which depends on the spontaneity of judgement, and self-determined spontaneous action, can be seen as sharing the same source, which is not accessible to scientific investigation.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010])
     A reaction: This is the 'spontaneity' of judgements and choices which was seen as the main idea in Kant. It inspired romantic individualism. The judgements are the rule-based application of concepts.
German Idealism tried to stop oppositions of appearances/things and receptivity/spontaneity [Bowie]
     Full Idea: A central aim of German Idealism is to overcome Kant's oppositions between appearances and thing in themselves, and between receptivity and spontaneity.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010], 2)
     A reaction: I have the impression that there were two strategies: break down the opposition within the self (Fichte), or break down the opposition in the world (Spinozism).
Crucial to Idealism is the idea of continuity between receptivity and spontaneous judgement [Bowie]
     Full Idea: A crucial idea for German Idealism (from Hamann) is that apparently passive receptivity and active spontaneity are in fact different degrees of the same 'activity, and the gap between subject and world can be closed.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010], 3)
     A reaction: The 'passive' bit seems to be Hume's 'impressions', which are Kant's 'intuitions', which need 'spontaneous' interpretation to become experiences. Critics of Kant said this implied a dualism.
17. Mind and Body / C. Functionalism / 2. Machine Functionalism
Basic logic can be done by syntax, with no semantics [Gödel, by Rey]
     Full Idea: Gödel in his completeness theorem for first-order logic showed that a certain set of syntactically specifiable rules was adequate to capture all first-order valid arguments. No semantics (e.g. reference, truth, validity) was necessary.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Georges Rey - Contemporary Philosophy of Mind 8.2
     A reaction: This implies that a logic machine is possible, but we shouldn't raise our hopes for proper rationality. Validity can be shown for purely algebraic arguments, but rationality requires truth as well as validity, and that needs propositions and semantics.