Combining Texts

All the ideas for 'German Philosophy: a very short introduction', 'Metaphysics: the logical approach' and 'Philosophical Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


58 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
Metaphysics focuses on Platonism, essentialism, materialism and anti-realism [Benardete,JA]
     Full Idea: In contemporary metaphysics the major areas of discussion are Platonism, essentialism, materialism and anti-realism.
     From: José A. Benardete (Metaphysics: the logical approach [1989], After)
1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
There are the 'is' of predication (a function), the 'is' of identity (equals), and the 'is' of existence (quantifier) [Benardete,JA]
     Full Idea: At least since Russell, one has routinely distinguished between the 'is' of predication ('Socrates is wise', Fx), the 'is' of identity ('Morning Star is Evening Star', =), and the 'is' of existence ('the cat is under the bed', Ex).
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch. 7)
     A reaction: This seems horribly nitpicking to many people, but I love it - because it is just true, and it is a truth right at the basis of the confusions in our talk. Analytic philosophy forever! [P.S. 'Tiddles is a cat' - the 'is' membership]
1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Analytical philosophy analyses separate concepts successfully, but lacks a synoptic vision of the results [Benardete,JA]
     Full Idea: Analytical philosophy excels in the piecemeal analysis of causation, perception, knowledge and so on, but there is a striking poverty of any synoptic vision of these independent studies.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.22)
1. Philosophy / G. Scientific Philosophy / 1. Aims of Science
Presumably the statements of science are true, but should they be taken literally or not? [Benardete,JA]
     Full Idea: As our bible, the Book of Science is presumed to contain only true sentences, but it is less clear how they are to be construed, which literally and which non-literally.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.13)
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
With four tense operators, all complex tenses reduce to fourteen basic cases [Burgess]
     Full Idea: Fand P as 'will' and 'was', G as 'always going to be', H as 'always has been', all tenses reduce to 14 cases: the past series, each implying the next, FH,H,PH,HP,P,GP, and the future series PG,G,FG,GF,F,HF, plus GH=HG implying all, FP=PF which all imply.
     From: John P. Burgess (Philosophical Logic [2009], 2.8)
     A reaction: I have tried to translate the fourteen into English, but am not quite confident enough to publish them here. I leave it as an exercise for the reader.
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The temporal Barcan formulas fix what exists, which seems absurd [Burgess]
     Full Idea: In temporal logic, if the converse Barcan formula holds then nothing goes out of existence, and the direct Barcan formula holds if nothing ever comes into existence. These results highlight the intuitive absurdity of the Barcan formulas.
     From: John P. Burgess (Philosophical Logic [2009], 2.9)
     A reaction: This is my reaction to the modal cases as well - the absurdity of thinking that no actually nonexistent thing might possibly have existed, or that the actual existents might not have existed. Williamson seems to be the biggest friend of the formulas.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Is classical logic a part of intuitionist logic, or vice versa? [Burgess]
     Full Idea: From one point of view intuitionistic logic is a part of classical logic, missing one axiom, from another classical logic is a part of intuitionistic logic, missing two connectives, intuitionistic v and →
     From: John P. Burgess (Philosophical Logic [2009], 6.4)
It is still unsettled whether standard intuitionist logic is complete [Burgess]
     Full Idea: The question of the completeness of the full intuitionistic logic for its intended interpretation is not yet fully resolved.
     From: John P. Burgess (Philosophical Logic [2009], 6.9)
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
Relevance logic's → is perhaps expressible by 'if A, then B, for that reason' [Burgess]
     Full Idea: The relevantist logician's → is perhaps expressible by 'if A, then B, for that reason'.
     From: John P. Burgess (Philosophical Logic [2009], 5.8)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Set theory attempts to reduce the 'is' of predication to mathematics [Benardete,JA]
     Full Idea: Set theory offers the promise of a complete mathematization of the 'is' of predication.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.13)
The set of Greeks is included in the set of men, but isn't a member of it [Benardete,JA]
     Full Idea: Set inclusion is sharply distinguished from set membership (as the set of Greeks is found to be included in, but not a member of, the set of men).
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.13)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
The standard Z-F Intuition version of set theory has about ten agreed axioms [Benardete,JA, by PG]
     Full Idea: Zermelo proposed seven axioms for set theory, with Fraenkel adding others, to produce the standard Z-F Intuition.
     From: report of José A. Benardete (Metaphysics: the logical approach [1989], Ch.17) by PG - Db (ideas)
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
Technical people see logic as any formal system that can be studied, not a study of argument validity [Burgess]
     Full Idea: Among the more technically oriented a 'logic' no longer means a theory about which forms of argument are valid, but rather means any formalism, regardless of its applications, that resembles original logic enough to be studied by similar methods.
     From: John P. Burgess (Philosophical Logic [2009], Pref)
     A reaction: There doesn't seem to be any great intellectual obligation to be 'technical'. As far as pure logic is concerned, I am very drawn to the computer approach, since I take that to be the original dream of Aristotle and Leibniz - impersonal precision.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic neglects the non-mathematical, such as temporality or modality [Burgess]
     Full Idea: There are topics of great philosophical interest that classical logic neglects because they are not important to mathematics. …These include distinctions of past, present and future, or of necessary, actual and possible.
     From: John P. Burgess (Philosophical Logic [2009], 1.1)
Classical logic neglects counterfactuals, temporality and modality, because maths doesn't use them [Burgess]
     Full Idea: Classical logic neglects counterfactual conditionals for the same reason it neglects temporal and modal distinctions, namely, that they play no serious role in mathematics.
     From: John P. Burgess (Philosophical Logic [2009], 4.1)
     A reaction: Science obviously needs counterfactuals, and metaphysics needs modality. Maybe so-called 'classical' logic will be renamed 'basic mathematical logic'. Philosophy will become a lot clearer when that happens.
The Cut Rule expresses the classical idea that entailment is transitive [Burgess]
     Full Idea: The Cut rule (from A|-B and B|-C, infer A|-C) directly expresses the classical doctrine that entailment is transitive.
     From: John P. Burgess (Philosophical Logic [2009], 5.3)
5. Theory of Logic / A. Overview of Logic / 9. Philosophical Logic
Philosophical logic is a branch of logic, and is now centred in computer science [Burgess]
     Full Idea: Philosophical logic is a branch of logic, a technical subject. …Its centre of gravity today lies in theoretical computer science.
     From: John P. Burgess (Philosophical Logic [2009], Pref)
     A reaction: He firmly distinguishes it from 'philosophy of logic', but doesn't spell it out. I take it that philosophical logic concerns metaprinciples which compare logical systems, and suggest new lines of research. Philosophy of logic seems more like metaphysics.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Formalising arguments favours lots of connectives; proving things favours having very few [Burgess]
     Full Idea: When formalising arguments it is convenient to have as many connectives as possible available.; but when proving results about formulas it is convenient to have as few as possible.
     From: John P. Burgess (Philosophical Logic [2009], 1.4)
     A reaction: Illuminating. The fact that you can whittle classical logic down to two (or even fewer!) connectives warms the heart of technicians, but makes connection to real life much more difficult. Hence a bunch of extras get added.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / e. or
Asserting a disjunction from one disjunct seems odd, but can be sensible, and needed in maths [Burgess]
     Full Idea: Gricean implicature theory might suggest that a disjunction is never assertable when a disjunct is (though actually the disjunction might be 'pertinent') - but the procedure is indispensable in mathematical practice.
     From: John P. Burgess (Philosophical Logic [2009], 5.2)
     A reaction: He gives an example of a proof in maths which needs it, and an unusual conversational occasion where it makes sense.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
All occurrences of variables in atomic formulas are free [Burgess]
     Full Idea: All occurrences of variables in atomic formulas are free.
     From: John P. Burgess (Philosophical Logic [2009], 1.7)
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
The denotation of a definite description is flexible, rather than rigid [Burgess]
     Full Idea: By contrast to rigidly designating proper names, …the denotation of definite descriptions is (in general) not rigid but flexible.
     From: John P. Burgess (Philosophical Logic [2009], 2.9)
     A reaction: This modern way of putting it greatly clarifies why Russell was interested in the type of reference involved in definite descriptions. Obviously some descriptions (such as 'the only person who could ever have…') might be rigid.
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
'Induction' and 'recursion' on complexity prove by connecting a formula to its atomic components [Burgess]
     Full Idea: There are atomic formulas, and formulas built from the connectives, and that is all. We show that all formulas have some property, first for the atomics, then the others. This proof is 'induction on complexity'; we also use 'recursion on complexity'.
     From: John P. Burgess (Philosophical Logic [2009], 1.4)
     A reaction: That is: 'induction on complexity' builds a proof from atomics, via connectives; 'recursion on complexity' breaks down to the atomics, also via the connectives. You prove something by showing it is rooted in simple truths.
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
The sequent calculus makes it possible to have proof without transitivity of entailment [Burgess]
     Full Idea: It might be wondered how one could have any kind of proof procedure at all if transitivity of entailment is disallowed, but the sequent calculus can get around the difficulty.
     From: John P. Burgess (Philosophical Logic [2009], 5.3)
     A reaction: He gives examples where transitivity of entailment (so that you can build endless chains of deductions) might fail. This is the point of the 'cut free' version of sequent calculus, since the cut rule allows transitivity.
We can build one expanding sequence, instead of a chain of deductions [Burgess]
     Full Idea: Instead of demonstrations which are either axioms, or follow from axioms by rules, we can have one ever-growing sequence of formulas of the form 'Axioms |- ______', where the blank is filled by Axioms, then Lemmas, then Theorems, then Corollaries.
     From: John P. Burgess (Philosophical Logic [2009], 5.3)
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
'Tautologies' are valid formulas of classical sentential logic - or substitution instances in other logics [Burgess]
     Full Idea: The valid formulas of classical sentential logic are called 'tautologically valid', or simply 'tautologies'; with other logics 'tautologies' are formulas that are substitution instances of valid formulas of classical sentential logic.
     From: John P. Burgess (Philosophical Logic [2009], 1.5)
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Validity (for truth) and demonstrability (for proof) have correlates in satisfiability and consistency [Burgess]
     Full Idea: Validity (truth by virtue of logical form alone) and demonstrability (provability by virtue of logical form alone) have correlative notions of logical possibility, 'satisfiability' and 'consistency', which come apart in some logics.
     From: John P. Burgess (Philosophical Logic [2009], 3.3)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
We only need to study mathematical models, since all other models are isomorphic to these [Burgess]
     Full Idea: In practice there is no need to consider any but mathematical models, models whose universes consist of mathematical objects, since every model is isomorphic to one of these.
     From: John P. Burgess (Philosophical Logic [2009], 1.8)
     A reaction: The crucial link is the technique of Gödel Numbering, which can translate any verbal formula into numerical form. He adds that, because of the Löwenheim-Skolem theorem only subsets of the natural numbers need be considered.
Models leave out meaning, and just focus on truth values [Burgess]
     Full Idea: Models generally deliberately leave out meaning, retaining only what is important for the determination of truth values.
     From: John P. Burgess (Philosophical Logic [2009], 2.2)
     A reaction: This is the key point to hang on to, if you are to avoid confusing mathematical models with models of things in the real world.
We aim to get the technical notion of truth in all models matching intuitive truth in all instances [Burgess]
     Full Idea: The aim in setting up a model theory is that the technical notion of truth in all models should agree with the intuitive notion of truth in all instances. A model is supposed to represent everything about an instance that matters for its truth.
     From: John P. Burgess (Philosophical Logic [2009], 3.2)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The Liar seems like a truth-value 'gap', but dialethists see it as a 'glut' [Burgess]
     Full Idea: It is a common view that the liar sentence ('This very sentence is not true') is an instance of a truth-value gap (neither true nor false), but some dialethists cite it as an example of a truth-value glut (both true and false).
     From: John P. Burgess (Philosophical Logic [2009], 5.7)
     A reaction: The defence of the glut view must be that it is true, then it is false, then it is true... Could it manage both at once?
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Greeks saw the science of proportion as the link between geometry and arithmetic [Benardete,JA]
     Full Idea: The Greeks saw the independent science of proportion as the link between geometry and arithmetic.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.15)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Negatives, rationals, irrationals and imaginaries are all postulated to solve baffling equations [Benardete,JA]
     Full Idea: The Negative numbers are postulated (magic word) to solve x=5-8, Rationals postulated to solve 2x=3, Irrationals for x-squared=2, and Imaginaries for x-squared=-1. (…and Zero for x=5-5) …and x/0 remains eternally open.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.14)
Natural numbers are seen in terms of either their ordinality (Peano), or cardinality (set theory) [Benardete,JA]
     Full Idea: One approaches the natural numbers in terms of either their ordinality (Peano), or cardinality (set theory).
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.17)
7. Existence / B. Change in Existence / 4. Events / a. Nature of events
If slowness is a property of walking rather than the walker, we must allow that events exist [Benardete,JA]
     Full Idea: Once we conceded that Tom can walk slowly or quickly, and that the slowness and quickness is a property of the walking and not of Tom, we can hardly refrain from quantifying over events (such as 'a walking') in our ontology.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch. 6)
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Early pre-Socratics had a mass-noun ontology, which was replaced by count-nouns [Benardete,JA]
     Full Idea: With their 'mass-noun' ontologies, the early pre-Socratics were blind to plurality ...but the count-noun ontologists came to dominate the field forever after.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch. 6)
     A reaction: The mass-nouns are such things as earth, air, fire and water. This is a very interesting historical observation (cited by Laycock). Our obsession with identity seems tied to formal logic. There is a whole other worldview waiting out there.
8. Modes of Existence / D. Universals / 6. Platonic Forms / d. Forms critiques
If there is no causal interaction with transcendent Platonic objects, how can you learn about them? [Benardete,JA]
     Full Idea: How can you learn of the existence of transcendent Platonic objects if there is no causal interaction with them?
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.22)
9. Objects / C. Structure of Objects / 5. Composition of an Object
Why should packed-together particles be a thing (Mt Everest), but not scattered ones? [Benardete,JA]
     Full Idea: Why suppose these particles packed together constitute a macro-entity (namely, Mt Everest), whereas those, of equal number, scattered around, fail to add up to anything beyond themselves?
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch. 2)
9. Objects / D. Essence of Objects / 6. Essence as Unifier
Could a horse lose the essential property of being a horse, and yet continue to exist? [Benardete,JA]
     Full Idea: Is being a horse an essential property of a horse? Can we so much as conceive the abstract possibility of a horse's ceasing to be a horse even while continuing to exist?
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.20)
9. Objects / E. Objects over Time / 2. Objects that Change
If a soldier continues to exist after serving as a soldier, does the wind cease to exist after it ceases to blow? [Benardete,JA]
     Full Idea: If a soldier need not cease to exist merely because he ceases to be a soldier, there is room to doubt that the wind ceases to exist when it ceases to be a wind.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch. 6)
9. Objects / E. Objects over Time / 8. Continuity of Rivers
One can step into the same river twice, but not into the same water [Benardete,JA]
     Full Idea: One can step into the same river twice, but one must not expect to step into the same water.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.21)
9. Objects / F. Identity among Objects / 5. Self-Identity
Maybe self-identity isn't existence, if Pegasus can be self-identical but non-existent [Benardete,JA]
     Full Idea: 'Existence' can't be glossed as self-identical (critics say) because Pegasus, even while being self-identical, fails to exist.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.11)
Absolutists might accept that to exist is relative, but relative to what? How about relative to itself? [Benardete,JA]
     Full Idea: With the thesis that to be as such is to be relative, the absolutist may be found to concur, but the issue turns on what it might be that a thing is supposed to be relative to. Why not itself?
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch. 8)
10. Modality / A. Necessity / 4. De re / De dicto modality
De re modality seems to apply to objects a concept intended for sentences [Burgess]
     Full Idea: There is a problem over 'de re' modality (as contrasted with 'de dicto'), as in ∃x□x. What is meant by '"it is analytic that Px" is satisfied by a', given that analyticity is a notion that in the first instance applies to complete sentences?
     From: John P. Burgess (Philosophical Logic [2009], 3.9)
     A reaction: This is Burgess's summary of one of Quine's original objections. The issue may be a distinction between whether the sentence is analytic, and what makes it analytic. The necessity of bachelors being unmarried makes that sentence analytic.
10. Modality / A. Necessity / 6. Logical Necessity
General consensus is S5 for logical modality of validity, and S4 for proof [Burgess]
     Full Idea: To the extent that there is any conventional wisdom about the question, it is that S5 is correct for alethic logical modality, and S4 correct for apodictic logical modality.
     From: John P. Burgess (Philosophical Logic [2009], 3.8)
     A reaction: In classical logic these coincide, so presumably one should use the minimum system to do the job, which is S4 (?).
Logical necessity has two sides - validity and demonstrability - which coincide in classical logic [Burgess]
     Full Idea: Logical necessity is a genus with two species. For classical logic the truth-related notion of validity and the proof-related notion of demonstrability, coincide - but they are distinct concept. In some logics they come apart, in intension and extension.
     From: John P. Burgess (Philosophical Logic [2009], 3.3)
     A reaction: They coincide in classical logic because it is sound and complete. This strikes me as the correct approach to logical necessity, tying it to the actual nature of logic, rather than some handwavy notion of just 'true in all possible worlds'.
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
Three conditionals theories: Materialism (material conditional), Idealism (true=assertable), Nihilism (no truth) [Burgess]
     Full Idea: Three main theories of the truth of indicative conditionals are Materialism (the conditions are the same as for the material conditional), Idealism (identifying assertability with truth-value), and Nihilism (no truth, just assertability).
     From: John P. Burgess (Philosophical Logic [2009], 4.3)
It is doubtful whether the negation of a conditional has any clear meaning [Burgess]
     Full Idea: It is contentious whether conditionals have negations, and whether 'it is not the case that if A,B' has any clear meaning.
     From: John P. Burgess (Philosophical Logic [2009], 4.9)
     A reaction: This seems to be connected to Lewis's proof that a probability conditional cannot be reduced to a single proposition. If a conditional only applies to A-worlds, it is not surprising that its meaning gets lost when it leaves that world.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Transcendental idealism aims to explain objectivity through subjectivity [Bowie]
     Full Idea: The aim of transcendental idealism is to give a basis for objectivity in terms of subjectivity.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010], 1)
     A reaction: Hume used subjectivity to undermine the findings of objectivity. There was then no return to naive objectivity. Kant's aim then was to thwart global scepticism. Post-Kantians feared that he had failed.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / d. Absolute idealism
The Idealists saw the same unexplained spontaneity in Kant's judgements and choices [Bowie]
     Full Idea: The Idealist saw in Kant that knowledge, which depends on the spontaneity of judgement, and self-determined spontaneous action, can be seen as sharing the same source, which is not accessible to scientific investigation.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010])
     A reaction: This is the 'spontaneity' of judgements and choices which was seen as the main idea in Kant. It inspired romantic individualism. The judgements are the rule-based application of concepts.
German Idealism tried to stop oppositions of appearances/things and receptivity/spontaneity [Bowie]
     Full Idea: A central aim of German Idealism is to overcome Kant's oppositions between appearances and thing in themselves, and between receptivity and spontaneity.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010], 2)
     A reaction: I have the impression that there were two strategies: break down the opposition within the self (Fichte), or break down the opposition in the world (Spinozism).
Crucial to Idealism is the idea of continuity between receptivity and spontaneous judgement [Bowie]
     Full Idea: A crucial idea for German Idealism (from Hamann) is that apparently passive receptivity and active spontaneity are in fact different degrees of the same 'activity, and the gap between subject and world can be closed.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010], 3)
     A reaction: The 'passive' bit seems to be Hume's 'impressions', which are Kant's 'intuitions', which need 'spontaneous' interpretation to become experiences. Critics of Kant said this implied a dualism.
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
The clearest a priori knowledge is proving non-existence through contradiction [Benardete,JA]
     Full Idea: One proves non-existence (e.g. of round squares) by using logic to derive a contradiction from the concept; it is precisely here, in such proofs, that we find the clearest example of a priori knowledge.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch. 4)
12. Knowledge Sources / A. A Priori Knowledge / 5. A Priori Synthetic
Appeals to intuition seem to imply synthetic a priori knowledge [Benardete,JA]
     Full Idea: Appeals to intuition - no matter how informal - can hardly fail to smack of the synthetic a priori.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.18)
If we know truths about prime numbers, we seem to have synthetic a priori knowledge of Platonic objects [Benardete,JA]
     Full Idea: Assume that we know to be true propositions of the form 'There are exactly x prime numbers between y and z', and synthetic a priori truths about Platonic objects are delivered to us on a silver platter.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.18)
Logical positivism amounts to no more than 'there is no synthetic a priori' [Benardete,JA]
     Full Idea: Logical positivism has been concisely summarised as 'there is no synthetic a priori'.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.18)
Assertions about existence beyond experience can only be a priori synthetic [Benardete,JA]
     Full Idea: No one thinks that the proposition that something exists that transcends all possible experience harbours a logical inconsistency. Its denial cannot therefore be an analytic proposition, so it must be synthetic, though only knowable on a priori grounds.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.18)
27. Natural Reality / C. Space / 3. Points in Space
Rationalists see points as fundamental, but empiricists prefer regions [Benardete,JA]
     Full Idea: Rationalists have been happier with an ontology of points, and empiricists with an ontology of regions.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.16)
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
In the ontological argument a full understanding of the concept of God implies a contradiction in 'There is no God' [Benardete,JA]
     Full Idea: In the ontological argument a deep enough understanding of the very concept of God allows one to derive by logic a contradiction from the statement 'There is no God'.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch. 4)