Combining Texts

All the ideas for 'German Philosophy: a very short introduction', 'Introduction to Mathematical Logic' and 'Letters to Queen Charlotte'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Post proved the consistency of propositional logic in 1921 [Walicki]
     Full Idea: A proof of the consistency of propositional logic was given by Emil Post in 1921.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2.1)
Propositional language can only relate statements as the same or as different [Walicki]
     Full Idea: Propositional language is very rudimentary and has limited powers of expression. The only relation between various statements it can handle is that of identity and difference. As are all the same, but Bs can be different from As.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 7 Intro)
     A reaction: [second sentence a paraphrase] In predicate logic you could represent two statements as being the same except for one element (an object or predicate or relation or quantifier).
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Boolean connectives are interpreted as functions on the set {1,0} [Walicki]
     Full Idea: Boolean connectives are interpreted as functions on the set {1,0}.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 5.1)
     A reaction: 1 and 0 are normally taken to be true (T) and false (F). Thus the functions output various combinations of true and false, which are truth tables.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is useful for defining sets by properties, when the members are not yet known [Walicki]
     Full Idea: The empty set is mainly a mathematical convenience - defining a set by describing the properties of its members in an involved way, we may not know from the very beginning what its members are.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
The empty set avoids having to take special precautions in case members vanish [Walicki]
     Full Idea: Without the assumption of the empty set, one would often have to take special precautions for the case where a set happened to contain no elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
     A reaction: Compare the introduction of the concept 'zero', where special precautions are therefore required. ...But other special precautions are needed without zero. Either he pays us, or we pay him, or ...er. Intersecting sets need the empty set.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
Ordinals play the central role in set theory, providing the model of well-ordering [Walicki]
     Full Idea: Ordinals play the central role in set theory, providing the paradigmatic well-orderings.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: When you draw the big V of the iterative hierarchy of sets (built from successive power sets), the ordinals are marked as a single line up the middle, one ordinal for each level.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
To determine the patterns in logic, one must identify its 'building blocks' [Walicki]
     Full Idea: In order to construct precise and valid patterns of arguments one has to determine their 'building blocks'. One has to identify the basic terms, their kinds and means of combination.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History Intro)
     A reaction: A deceptively simple and important idea. All explanation requires patterns and levels, and it is the idea of building blocks which makes such things possible. It is right at the centre of our grasp of everything.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' of a theory specifies interpreting a language in a domain to make all theorems true [Walicki]
     Full Idea: A specification of a domain of objects, and of the rules for interpreting the symbols of a logical language in this domain such that all the theorems of the logical theory are true is said to be a 'model' of the theory.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.1.3)
     A reaction: The basic ideas of this emerged 1915-30, but it needed Tarski's account of truth to really get it going.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The L-S Theorem says no theory (even of reals) says more than a natural number theory [Walicki]
     Full Idea: The L-S Theorem is ...a shocking result, since it implies that any consistent formal theory of everything - even about biology, physics, sets or the real numbers - can just as well be understood as being about natural numbers. It says nothing more.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2)
     A reaction: Illuminating. Particularly the point that no theory about the real numbers can say anything more than a theory about the natural numbers. So the natural numbers contain all the truths we can ever express? Eh?????
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
A compact axiomatisation makes it possible to understand a field as a whole [Walicki]
     Full Idea: Having such a compact [axiomatic] presentation of a complicated field [such as Euclid's], makes it possible to relate not only to particular theorems but also to the whole field as such.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
Axiomatic systems are purely syntactic, and do not presuppose any interpretation [Walicki]
     Full Idea: Axiomatic systems, their primitive terms and proofs, are purely syntactic, that is, do not presuppose any interpretation. ...[142] They never address the world directly, but address a possible semantic model which formally represents the world.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinals are transitive sets of transitive sets; or transitive sets totally ordered by inclusion [Walicki]
     Full Idea: An ordinal can be defined as a transitive set of transitive sets, or else, as a transitive set totally ordered by set inclusion.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Ordinals are the empty set, union with the singleton, and any arbitrary union of ordinals [Walicki]
     Full Idea: The collection of ordinals is defined inductively: Basis: the empty set is an ordinal; Ind: for an ordinal x, the union with its singleton is also an ordinal; and any arbitrary (possibly infinite) union of ordinals is an ordinal.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: [symbolism translated into English] Walicki says they are called 'ordinal numbers', but are in fact a set.
The union of finite ordinals is the first 'limit ordinal'; 2ω is the second... [Walicki]
     Full Idea: We can form infinite ordinals by taking unions of ordinals. We can thus form 'limit ordinals', which have no immediate predecessor. ω is the first (the union of all finite ordinals), ω + ω = sω is second, 3ω the third....
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Two infinite ordinals can represent a single infinite cardinal [Walicki]
     Full Idea: There may be several ordinals for the same cardinality. ...Two ordinals can represent different ways of well-ordering the same number (aleph-0) of elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: This only applies to infinite ordinals and cardinals. For the finite, the two coincide. In infinite arithmetic the rules are different.
Members of ordinals are ordinals, and also subsets of ordinals [Walicki]
     Full Idea: Every member of an ordinal is itself an ordinal, and every ordinal is a transitive set (its members are also its subsets; a member of a member of an ordinal is also a member of the ordinal).
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
In non-Euclidean geometry, all Euclidean theorems are valid that avoid the fifth postulate [Walicki]
     Full Idea: Since non-Euclidean geometry preserves all Euclid's postulates except the fifth one, all the theorems derived without the use of the fifth postulate remain valid.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
We know mathematical axioms, such as subtracting equals from equals leaves equals, by a natural light [Leibniz]
     Full Idea: It is by the natural light that the axioms of mathematics are recognised. If we take away the same quantity from two equal things, …a thing we can easily predict without having experienced it.
     From: Gottfried Leibniz (Letters to Queen Charlotte [1702], p.189)
     A reaction: He also says two equal weights will keep a balance level. Plato thinks his slave boy understands halving an area by the natural light, but that is just as likely to be experience. It is too easy to attribut thoughts to a 'natural light'.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Inductive proof depends on the choice of the ordering [Walicki]
     Full Idea: Inductive proof is not guaranteed to work in all cases and, particularly, it depends heavily on the choice of the ordering.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.1.1)
     A reaction: There has to be an well-founded ordering for inductive proofs to be possible.
9. Objects / D. Essence of Objects / 7. Essence and Necessity / b. Essence not necessities
A necessary feature (such as air for humans) is not therefore part of the essence [Leibniz]
     Full Idea: That which is necessary for something does not constitute its essence. Air is necessary for our life, but our life is something other than air.
     From: Gottfried Leibniz (Letters to Queen Charlotte [1702], 1702)
     A reaction: Bravo. Why can't modern philosophers hang on to this distinction? They seem to think that because they don't believe in traditional essences they can purloin the word for something else. Same with the word 'abstraction'.
10. Modality / A. Necessity / 2. Nature of Necessity
Scotus based modality on semantic consistency, instead of on what the future could allow [Walicki]
     Full Idea: The link between time and modality was severed by Duns Scotus, who proposed a notion of possibility based purely on the notion of semantic consistency. 'Possible' means for him logically possible, that is, not involving contradiction.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History B.4)
10. Modality / D. Knowledge of Modality / 1. A Priori Necessary
Intelligible truth is independent of any external things or experiences [Leibniz]
     Full Idea: Intelligible truth is independent of the truth or of the existence outside us of sensible and material things. ....It is generally true that we only know necessary truths by the natural light [of reason]
     From: Gottfried Leibniz (Letters to Queen Charlotte [1702], 1702)
     A reaction: A nice quotation summarising a view for which Leibniz is famous - that there is a tight correlation between necessary truths and our a priori knowledge of them. The obvious challenge comes from Kripke's claim that scientists can discover necessities.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Transcendental idealism aims to explain objectivity through subjectivity [Bowie]
     Full Idea: The aim of transcendental idealism is to give a basis for objectivity in terms of subjectivity.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010], 1)
     A reaction: Hume used subjectivity to undermine the findings of objectivity. There was then no return to naive objectivity. Kant's aim then was to thwart global scepticism. Post-Kantians feared that he had failed.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / d. Absolute idealism
The Idealists saw the same unexplained spontaneity in Kant's judgements and choices [Bowie]
     Full Idea: The Idealist saw in Kant that knowledge, which depends on the spontaneity of judgement, and self-determined spontaneous action, can be seen as sharing the same source, which is not accessible to scientific investigation.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010])
     A reaction: This is the 'spontaneity' of judgements and choices which was seen as the main idea in Kant. It inspired romantic individualism. The judgements are the rule-based application of concepts.
German Idealism tried to stop oppositions of appearances/things and receptivity/spontaneity [Bowie]
     Full Idea: A central aim of German Idealism is to overcome Kant's oppositions between appearances and thing in themselves, and between receptivity and spontaneity.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010], 2)
     A reaction: I have the impression that there were two strategies: break down the opposition within the self (Fichte), or break down the opposition in the world (Spinozism).
Crucial to Idealism is the idea of continuity between receptivity and spontaneous judgement [Bowie]
     Full Idea: A crucial idea for German Idealism (from Hamann) is that apparently passive receptivity and active spontaneity are in fact different degrees of the same 'activity, and the gap between subject and world can be closed.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010], 3)
     A reaction: The 'passive' bit seems to be Hume's 'impressions', which are Kant's 'intuitions', which need 'spontaneous' interpretation to become experiences. Critics of Kant said this implied a dualism.
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / d. Secondary qualities
We know objects by perceptions, but their qualities don't reveal what it is we are perceiving [Leibniz]
     Full Idea: We use the external senses ...to make us know their particular objects ...but they do not make us know what those sensible qualities are ...whether red is small revolving globules causing light, heat a whirling of dust, or sound is waves in air.
     From: Gottfried Leibniz (Letters to Queen Charlotte [1702], 1702)
     A reaction: These seems to be exactly the concept of secondary qualities which Locke was promoting. They are unreliable information about the objects we perceive. Primary qualities are reliable information. I like that distinction.
12. Knowledge Sources / D. Empiricism / 1. Empiricism
There is nothing in the understanding but experiences, plus the understanding itself, and the understander [Leibniz]
     Full Idea: It can be said that there is nothing in the understanding which does not come from the senses, except the understanding itself, or that which understands.
     From: Gottfried Leibniz (Letters to Queen Charlotte [1702], 1702)
     A reaction: Given that Leibniz is labelled as a 'rationalist', this is awfully close to empiricism. Not Locke's 'tabula rasa' perhaps, but Hume's experiences plus associations. Leibniz has a much loftier notion of understanding and reason than Hume does.