Combining Texts

All the ideas for 'German Philosophy: a very short introduction', 'Structuralism and the Notion of Dependence' and 'Hilbert's Programme'

unexpand these ideas     |    start again     |     specify just one area for these texts


16 ideas

6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Gödel showed that the syntactic approach to the infinite is of limited value [Kreisel]
     Full Idea: Usually Gödel's incompleteness theorems are taken as showing a limitation on the syntactic approach to an understanding of the concept of infinity.
     From: Georg Kreisel (Hilbert's Programme [1958], 05)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
The study of mathematical foundations needs new non-mathematical concepts [Kreisel]
     Full Idea: It is necessary to use non-mathematical concepts, i.e. concepts lacking the precision which permit mathematical manipulation, for a significant approach to foundations. We currently have no concepts of this kind which we can take seriously.
     From: Georg Kreisel (Hilbert's Programme [1958], 06)
     A reaction: Music to the ears of any philosopher of mathematics, because it means they are not yet out of a job.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
'Deductivist' structuralism is just theories, with no commitment to objects, or modality [Linnebo]
     Full Idea: The 'deductivist' version of eliminativist structuralism avoids ontological commitments to mathematical objects, and to modal vocabulary. Mathematics is formulations of various (mostly categorical) theories to describe kinds of concrete structures.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], 1)
     A reaction: 'Concrete' is ambiguous here, as mathematicians use it for the actual working maths, as opposed to the metamathematics. Presumably the structures are postulated rather than described. He cites Russell 1903 and Putnam. It is nominalist.
Non-eliminative structuralism treats mathematical objects as positions in real abstract structures [Linnebo]
     Full Idea: The 'non-eliminative' version of mathematical structuralism takes it to be a fundamental insight that mathematical objects are really just positions in abstract mathematical structures.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], I)
     A reaction: The point here is that it is non-eliminativist because it is committed to the existence of mathematical structures. I oppose this view, since once you are committed to the structures, you may as well admit a vast implausible menagerie of abstracta.
'Modal' structuralism studies all possible concrete models for various mathematical theories [Linnebo]
     Full Idea: The 'modal' version of eliminativist structuralism lifts the deductivist ban on modal notions. It studies what necessarily holds in all concrete models which are possible for various theories.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], I)
     A reaction: [He cites Putnam 1967, and Hellman 1989] If mathematical truths are held to be necessary (which seems to be right), then it seems reasonable to include modal notions, about what is possible, in its study.
'Set-theoretic' structuralism treats mathematics as various structures realised among the sets [Linnebo]
     Full Idea: 'Set-theoretic' structuralism rejects deductive nominalism in favour of a background theory of sets, and mathematics as the various structures realized among the sets. This is often what mathematicians have in mind when they talk about structuralism.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], I)
     A reaction: This is the big shift from 'mathematics can largely be described in set theory' to 'mathematics just is set theory'. If it just is set theory, then which version of set theory? Which axioms? The safe iterative conception, or something bolder?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Structuralism differs from traditional Platonism, because the objects depend ontologically on their structure [Linnebo]
     Full Idea: Structuralism can be distinguished from traditional Platonism in that it denies that mathematical objects from the same structure are ontologically independent of one another
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], III)
     A reaction: My instincts strongly cry out against all versions of this. If you are going to be a platonist (rather as if you are going to be religious) you might as well go for it big time and have independent objects, which will then dictate a structure.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Structuralism is right about algebra, but wrong about sets [Linnebo]
     Full Idea: Against extreme views that all mathematical objects depend on the structures to which they belong, or that none do, I defend a compromise view, that structuralists are right about algebraic objects (roughly), but anti-structuralists are right about sets.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], Intro)
In mathematical structuralism the small depends on the large, which is the opposite of physical structures [Linnebo]
     Full Idea: If objects depend on the other objects, this would mean an 'upward' dependence, in that they depend on the structure to which they belong, where the physical realm has a 'downward' dependence, with structures depending on their constituents.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], III)
     A reaction: This nicely captures an intuition I have that there is something wrong with a commitment primarily to 'structures'. Our only conception of such things is as built up out of components. Not that I am committing to mathematical 'components'!
7. Existence / C. Structure of Existence / 4. Ontological Dependence
There may be a one-way direction of dependence among sets, and among natural numbers [Linnebo]
     Full Idea: We can give an exhaustive account of the identity of the empty set and its singleton without mentioning infinite sets, and it might be possible to defend the view that one natural number depends on its predecessor but not vice versa.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], V)
     A reaction: Linnebo uses this as one argument against mathematical structuralism, where the small seems to depend on the large. The view of sets rests on the iterative conception, where each level is derived from a lower level. He dismisses structuralism of sets.
8. Modes of Existence / B. Properties / 4. Intrinsic Properties
An 'intrinsic' property is either found in every duplicate, or exists independent of all externals [Linnebo]
     Full Idea: There are two main ways of spelling out an 'intrinsic' property: if and only if it is shared by every duplicate of an object, ...and if and only if the object would have this property even if the rest of the universe were removed or disregarded.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], II)
     A reaction: [He cites B.Weatherson's Stanford Encyclopaedia article] How about an intrinsic property being one which explains its identity, or behaviour, or persistence conditions?
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Transcendental idealism aims to explain objectivity through subjectivity [Bowie]
     Full Idea: The aim of transcendental idealism is to give a basis for objectivity in terms of subjectivity.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010], 1)
     A reaction: Hume used subjectivity to undermine the findings of objectivity. There was then no return to naive objectivity. Kant's aim then was to thwart global scepticism. Post-Kantians feared that he had failed.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / d. Absolute idealism
The Idealists saw the same unexplained spontaneity in Kant's judgements and choices [Bowie]
     Full Idea: The Idealist saw in Kant that knowledge, which depends on the spontaneity of judgement, and self-determined spontaneous action, can be seen as sharing the same source, which is not accessible to scientific investigation.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010])
     A reaction: This is the 'spontaneity' of judgements and choices which was seen as the main idea in Kant. It inspired romantic individualism. The judgements are the rule-based application of concepts.
German Idealism tried to stop oppositions of appearances/things and receptivity/spontaneity [Bowie]
     Full Idea: A central aim of German Idealism is to overcome Kant's oppositions between appearances and thing in themselves, and between receptivity and spontaneity.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010], 2)
     A reaction: I have the impression that there were two strategies: break down the opposition within the self (Fichte), or break down the opposition in the world (Spinozism).
Crucial to Idealism is the idea of continuity between receptivity and spontaneous judgement [Bowie]
     Full Idea: A crucial idea for German Idealism (from Hamann) is that apparently passive receptivity and active spontaneity are in fact different degrees of the same 'activity, and the gap between subject and world can be closed.
     From: Andrew Bowie (German Philosophy: a very short introduction [2010], 3)
     A reaction: The 'passive' bit seems to be Hume's 'impressions', which are Kant's 'intuitions', which need 'spontaneous' interpretation to become experiences. Critics of Kant said this implied a dualism.
27. Natural Reality / C. Space / 3. Points in Space
The natural conception of points ducks the problem of naming or constructing each point [Kreisel]
     Full Idea: In analysis, the most natural conception of a point ignores the matter of naming the point, i.e. how the real number is represented or by what constructions the point is reached from given points.
     From: Georg Kreisel (Hilbert's Programme [1958], 13)
     A reaction: This problem has bothered me. There are formal ways of constructing real numbers, but they don't seem to result in a name for each one.