Combining Texts

All the ideas for 'Locke on Essences and Kinds', 'What's Wrong with Rape?' and 'Introduction to Mathematical Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


26 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Post proved the consistency of propositional logic in 1921 [Walicki]
     Full Idea: A proof of the consistency of propositional logic was given by Emil Post in 1921.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2.1)
Propositional language can only relate statements as the same or as different [Walicki]
     Full Idea: Propositional language is very rudimentary and has limited powers of expression. The only relation between various statements it can handle is that of identity and difference. As are all the same, but Bs can be different from As.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 7 Intro)
     A reaction: [second sentence a paraphrase] In predicate logic you could represent two statements as being the same except for one element (an object or predicate or relation or quantifier).
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Boolean connectives are interpreted as functions on the set {1,0} [Walicki]
     Full Idea: Boolean connectives are interpreted as functions on the set {1,0}.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 5.1)
     A reaction: 1 and 0 are normally taken to be true (T) and false (F). Thus the functions output various combinations of true and false, which are truth tables.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is useful for defining sets by properties, when the members are not yet known [Walicki]
     Full Idea: The empty set is mainly a mathematical convenience - defining a set by describing the properties of its members in an involved way, we may not know from the very beginning what its members are.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
The empty set avoids having to take special precautions in case members vanish [Walicki]
     Full Idea: Without the assumption of the empty set, one would often have to take special precautions for the case where a set happened to contain no elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
     A reaction: Compare the introduction of the concept 'zero', where special precautions are therefore required. ...But other special precautions are needed without zero. Either he pays us, or we pay him, or ...er. Intersecting sets need the empty set.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
Ordinals play the central role in set theory, providing the model of well-ordering [Walicki]
     Full Idea: Ordinals play the central role in set theory, providing the paradigmatic well-orderings.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: When you draw the big V of the iterative hierarchy of sets (built from successive power sets), the ordinals are marked as a single line up the middle, one ordinal for each level.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
To determine the patterns in logic, one must identify its 'building blocks' [Walicki]
     Full Idea: In order to construct precise and valid patterns of arguments one has to determine their 'building blocks'. One has to identify the basic terms, their kinds and means of combination.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History Intro)
     A reaction: A deceptively simple and important idea. All explanation requires patterns and levels, and it is the idea of building blocks which makes such things possible. It is right at the centre of our grasp of everything.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' of a theory specifies interpreting a language in a domain to make all theorems true [Walicki]
     Full Idea: A specification of a domain of objects, and of the rules for interpreting the symbols of a logical language in this domain such that all the theorems of the logical theory are true is said to be a 'model' of the theory.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.1.3)
     A reaction: The basic ideas of this emerged 1915-30, but it needed Tarski's account of truth to really get it going.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The L-S Theorem says no theory (even of reals) says more than a natural number theory [Walicki]
     Full Idea: The L-S Theorem is ...a shocking result, since it implies that any consistent formal theory of everything - even about biology, physics, sets or the real numbers - can just as well be understood as being about natural numbers. It says nothing more.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2)
     A reaction: Illuminating. Particularly the point that no theory about the real numbers can say anything more than a theory about the natural numbers. So the natural numbers contain all the truths we can ever express? Eh?????
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
A compact axiomatisation makes it possible to understand a field as a whole [Walicki]
     Full Idea: Having such a compact [axiomatic] presentation of a complicated field [such as Euclid's], makes it possible to relate not only to particular theorems but also to the whole field as such.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
Axiomatic systems are purely syntactic, and do not presuppose any interpretation [Walicki]
     Full Idea: Axiomatic systems, their primitive terms and proofs, are purely syntactic, that is, do not presuppose any interpretation. ...[142] They never address the world directly, but address a possible semantic model which formally represents the world.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinals are transitive sets of transitive sets; or transitive sets totally ordered by inclusion [Walicki]
     Full Idea: An ordinal can be defined as a transitive set of transitive sets, or else, as a transitive set totally ordered by set inclusion.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Ordinals are the empty set, union with the singleton, and any arbitrary union of ordinals [Walicki]
     Full Idea: The collection of ordinals is defined inductively: Basis: the empty set is an ordinal; Ind: for an ordinal x, the union with its singleton is also an ordinal; and any arbitrary (possibly infinite) union of ordinals is an ordinal.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: [symbolism translated into English] Walicki says they are called 'ordinal numbers', but are in fact a set.
The union of finite ordinals is the first 'limit ordinal'; 2ω is the second... [Walicki]
     Full Idea: We can form infinite ordinals by taking unions of ordinals. We can thus form 'limit ordinals', which have no immediate predecessor. ω is the first (the union of all finite ordinals), ω + ω = sω is second, 3ω the third....
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Two infinite ordinals can represent a single infinite cardinal [Walicki]
     Full Idea: There may be several ordinals for the same cardinality. ...Two ordinals can represent different ways of well-ordering the same number (aleph-0) of elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: This only applies to infinite ordinals and cardinals. For the finite, the two coincide. In infinite arithmetic the rules are different.
Members of ordinals are ordinals, and also subsets of ordinals [Walicki]
     Full Idea: Every member of an ordinal is itself an ordinal, and every ordinal is a transitive set (its members are also its subsets; a member of a member of an ordinal is also a member of the ordinal).
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
In non-Euclidean geometry, all Euclidean theorems are valid that avoid the fifth postulate [Walicki]
     Full Idea: Since non-Euclidean geometry preserves all Euclid's postulates except the fifth one, all the theorems derived without the use of the fifth postulate remain valid.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Inductive proof depends on the choice of the ordering [Walicki]
     Full Idea: Inductive proof is not guaranteed to work in all cases and, particularly, it depends heavily on the choice of the ordering.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.1.1)
     A reaction: There has to be an well-founded ordering for inductive proofs to be possible.
9. Objects / D. Essence of Objects / 13. Nominal Essence
If kinds depend only on what can be observed, many underlying essences might produce the same kind [Eagle]
     Full Idea: If the kinds there are depend not on the essences of the objects but on their observed distinguishing particulars, ...then for any kind that we think there is, it is possible that there are many underlying essences which are observably indistinguishable.
     From: Antony Eagle (Locke on Essences and Kinds [2005], IV)
     A reaction: Eagle is commenting on Locke's reliance on nominal essences. This seems to be the genuine problem with jadeite and nephrite (both taken to be 'jade'), or with 'fool's gold'. This isn't an objection to Locke; it just explains the role of science.
Nominal essence are the observable properties of things [Eagle]
     Full Idea: It is clear the nominal essences really are the properties of the things which have them: they are (a subset of) the observable properties of the things.
     From: Antony Eagle (Locke on Essences and Kinds [2005], IV)
     A reaction: I think this is wrong. The surface characteristics are all that is available to us, so our classifications must be based on those, but it is on the ideas of them, not their intrinsic natures. That is empiricsm! What makes the properties 'essential'?
Nominal essence mistakenly gives equal weight to all underlying properties that produce appearances [Eagle]
     Full Idea: Nominal essence does not allow for gradations in significance for the underlying properties. Those are all essential for the object behaving as it observably does, and they must all be given equal weight when deciding what the object does.
     From: Antony Eagle (Locke on Essences and Kinds [2005], IV)
     A reaction: This is where 'scientific' essentialism comes in. If we take one object, or one kind of object, in isolation, Eagle is right. When we start to compare, and to set up controlled conditions tests, we can dig into the 'gradations' he cares about.
10. Modality / A. Necessity / 2. Nature of Necessity
Scotus based modality on semantic consistency, instead of on what the future could allow [Walicki]
     Full Idea: The link between time and modality was severed by Duns Scotus, who proposed a notion of possibility based purely on the notion of semantic consistency. 'Possible' means for him logically possible, that is, not involving contradiction.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History B.4)
25. Social Practice / F. Life Issues / 5. Sexual Morality
A rape disregards the status of being a person - but so does all assault [Foa]
     Full Idea: In a rape a person is used without proper regard for her personhood - but this is true of every kind of assault.
     From: Pamela Foa (What's Wrong with Rape? [1977], 1)
     A reaction: This is a good step towards her attempt to pin down what is specifically wrong with rape, which strikes me as an extremely important question, and not merely in order to justify punishments.
Rape of children is dreadful, but no one thinks children should have a right of consent [Foa]
     Full Idea: Rape of children is at least as heinous as rape of adults, though few believe that children have or ought to have the same large domain of consent adults (male and female) ought to have.
     From: Pamela Foa (What's Wrong with Rape? [1977], 1)
     A reaction: A powerful point. She is not quite spelling out the crux, which is that no one thinks children should have a right to consent to sexual intercourse, which means that consent is irrelevant in such a case of rape. So it can't be the key to adult rape?
If men should lust and women shouldn't, that makes rape the prevalent sexual model [Foa]
     Full Idea: We are taught that sexual desires are desires women ought not to have and men must have. This is the model which makes necessary an eternal battle of the sexes. It explains why rape is the prevalent model of sexuality.
     From: Pamela Foa (What's Wrong with Rape? [1977], 3)
     A reaction: A striking thought. See 'The Origins of Sex' by F.Dabhoiwala, which claims that women used to be seen as the sexual predators, and the balance shifted in the 18thC. Are women obliged to exhibit lust, in order to defuse rapacious desires?
26. Natural Theory / B. Natural Kinds / 4. Source of Kinds
Kinds are fixed by the essential properties of things - the properties that make it that kind of thing [Eagle]
     Full Idea: The natural thought is to think that real kinds are given only by classification on the basis of essential properties: properties that make an object the kind of thing that it is.
     From: Antony Eagle (Locke on Essences and Kinds [2005], II)
     A reaction: Circularity alert! Circularity alert! Essence gives a thing its kind - and hence we can see what the kind is? Test for a trivial property! Eagle is not unaware of these issues. Does he mean 'necessary' rather than 'essential'?