Combining Texts

All the ideas for 'fragments/reports', 'How to Define Theoretical Terms' and 'Ontology and Mathematical Truth'

unexpand these ideas     |    start again     |     specify just one area for these texts


16 ideas

2. Reason / D. Definition / 2. Aims of Definition
Defining terms either enables elimination, or shows that they don't require elimination [Lewis]
     Full Idea: To define theoretical terms might be to show how to do without them, but it is better to say that it shows there is no good reason to want to do without them.
     From: David Lewis (How to Define Theoretical Terms [1970], Intro)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
'Impure' sets have a concrete member, while 'pure' (abstract) sets do not [Jubien]
     Full Idea: Any set with a concrete member is 'impure'. 'Pure' sets are those that are not impure, and are paradigm cases of abstract entities, such as the sort of sets apparently dealt with in Zermelo-Fraenkel (ZF) set theory.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.116)
     A reaction: [I am unclear whether Jubien is introducing this distinction] This seems crucial in accounts of mathematics. On the one had arithmetic can be built from Millian pebbles, giving impure sets, while logicists build it from pure sets.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A model is 'fundamental' if it contains only concrete entities [Jubien]
     Full Idea: A first-order model can be viewed as a kind of ordered set, and if the domain of the model contains only concrete entities then it is a 'fundamental' model.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.117)
     A reaction: An important idea. Fundamental models are where the world of logic connects with the physical world. Any account of relationship between fundamental models and more abstract ones tells us how thought links to world.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
There couldn't just be one number, such as 17 [Jubien]
     Full Idea: It makes no sense to suppose there might be just one natural number, say seventeen.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.113)
     A reaction: Hm. Not convinced. If numbers are essentially patterns, we might only have the number 'twelve', because we had built our religion around anything which exhibited that form (in any of its various arrangements). Nice point, though.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
The subject-matter of (pure) mathematics is abstract structure [Jubien]
     Full Idea: The subject-matter of (pure) mathematics is abstract structure per se.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.115)
     A reaction: This is the Structuralist idea beginning to take shape after Benacerraf's launching of it. Note that Jubien gets there by his rejection of platonism, whereas some structuralist have given a platonist interpretation of structure.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
If we all intuited mathematical objects, platonism would be agreed [Jubien]
     Full Idea: If the intuition of mathematical objects were general, there would be no real debate over platonism.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.111)
     A reaction: It is particularly perplexing when Gödel says that his perception of them is just like sight or smell, since I have no such perception. How do you individuate very large numbers, or irrational numbers, apart from writing down numerals?
How can pure abstract entities give models to serve as interpretations? [Jubien]
     Full Idea: I am unable to see how the mere existence of pure abstract entities enables us to concoct appropriate models to serve as interpretations.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.111)
     A reaction: Nice question. It is always assumed that once we have platonic realm, that everything else follows. Even if we are able to grasp the objects, despite their causal inertness, we still have to discern innumerable relations between them.
Since mathematical objects are essentially relational, they can't be picked out on their own [Jubien]
     Full Idea: The essential properties of mathematical entities seem to be relational, ...so we make no progress unless we can pick out some mathematical entities wihout presupposing other entities already picked out.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.112)
     A reaction: [compressed] Jubien is a good critic of platonism. He has identified the problem with Frege's metaphor of a 'borehole', where we discover delightful new properties of numbers simply by reaching them.
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
The empty set is the purest abstract object [Jubien]
     Full Idea: The empty set is the pure abstract object par excellence.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.118 n8)
     A reaction: So a really good PhD on the empty set could crack the whole nature of reality. Get to work, whoever you are!
10. Modality / E. Possible worlds / 3. Transworld Objects / b. Rigid designation
A logically determinate name names the same thing in every possible world [Lewis]
     Full Idea: A logically determinate name is one which names the same thing in every possible world.
     From: David Lewis (How to Define Theoretical Terms [1970], III)
     A reaction: This appears to be rigid designation, before Kripke introduced the new word.
14. Science / B. Scientific Theories / 8. Ramsey Sentences
The Ramsey sentence of a theory says that it has at least one realisation [Lewis]
     Full Idea: The Ramsey sentence of a theory says that it has at least one realisation.
     From: David Lewis (How to Define Theoretical Terms [1970], V)
A Ramsey sentence just asserts that a theory can be realised, without saying by what [Lewis]
     Full Idea: If we specify a theory with all of its terms, and then replace all of those terms with variables, we can then say that some n-tuples of entities can satisfy this formula. This Ramsey sentence then says the theory is realised, without specifying by what.
     From: David Lewis (How to Define Theoretical Terms [1970], II)
     A reaction: [I have compressed Lewis, and cut out the symbolism]
There is a method for defining new scientific terms just using the terms we already understand [Lewis]
     Full Idea: I contend that there is a general method for defining newly introduced terms in a scientific theory, one which uses only the old terms we understood beforehand.
     From: David Lewis (How to Define Theoretical Terms [1970], Intro)
     A reaction: Lewis is game is to provide bridge laws for a reductive account of nature, without having to introduce something entirely new to achieve it. The idea of bridge laws in scientific theory is less in favour these days.
It is better to have one realisation of a theory than many - but it may not always be possible [Lewis]
     Full Idea: A uniquely realised theory is, other things being equal, certainly more satisfactory than a multiply realised theory. We should insist on unique realisation as a standard of correctness unless it is a standard too high to be met.
     From: David Lewis (How to Define Theoretical Terms [1970], III)
     A reaction: The point is that rewriting a theory as Ramsey sentences just says there is at least one realisation, and so it doesn't meet the highest standards for scientific theories. The influence of set-theoretic model theory is obvious in this approach.
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
     Full Idea: Archelaus was the first person to say that the universe is boundless.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 02.Ar.3
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]
     Full Idea: Archelaus wrote that life on Earth began in a primeval slime.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Malcolm Schofield - Archelaus
     A reaction: This sounds like a fairly clearcut assertion of the production of life by evolution. Darwin's contribution was to propose the mechanism for achieving it. We should honour the name of Archelaus for this idea.