Combining Texts

All the ideas for 'fragments/reports', 'fragments/reports' and 'Chemistry'

unexpand these ideas     |    start again     |     specify just one area for these texts


17 ideas

7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
Supervenience is simply modally robust property co-variance [Hendry]
     Full Idea: Supervenience is not an ontological relationship, being just modally robust property co-variance.
     From: Robin F. Hendry (Chemistry [2008], 'Ontol')
     A reaction: I take supervenience to be nothing more than an interesting phenomenon that requires explanation. I suppose Humean Supervenience is a priori metaphysics, since you could hardly explain it.
10. Modality / A. Necessity / 10. Impossibility
From the necessity of the past we can infer the impossibility of what never happens [Diod.Cronus, by White,MJ]
     Full Idea: Diodorus' Master Argument inferred that since what is past (i.e. true in the past) is necessary, and the impossible cannot follow from the possible, that therefore if something neither is nor ever will be the case, then it is impossible.
     From: report of Diodorus Cronus (fragments/reports [c.300 BCE]) by Michael J. White - Diodorus Cronus
     A reaction: The argument is, apparently, no longer fully clear, but it seems to imply determinism, or at least a rejection of the idea that free will and determinism are compatible. (Epictetus 2.19)
10. Modality / B. Possibility / 1. Possibility
The Master Argument seems to prove that only what will happen is possible [Diod.Cronus, by Epictetus]
     Full Idea: The Master Argument: these conflict 1) what is past and true is necessary, 2) the impossible does not follow from the possible, 3) something possible neither is nor will be true. Hence only that which is or will be true is possible.
     From: report of Diodorus Cronus (fragments/reports [c.300 BCE]) by Epictetus - The Discourses 2.19.1
     A reaction: [Epictetus goes on to discuss views about which of the three should be given up] It is possible there will be a sea fight tomorrow; tomorrow comes, and no sea fight; so there was necessarily no sea fight; so the impossible followed from the possible.
10. Modality / B. Possibility / 8. Conditionals / d. Non-truthfunction conditionals
Conditionals are true when the antecedent is true, and the consequent has to be true [Diod.Cronus]
     Full Idea: The connected (proposition) is true when it begins with true and neither could nor can end with false.
     From: Diodorus Cronus (fragments/reports [c.300 BCE]), quoted by Stephen Mumford - Dispositions 03.4
     A reaction: [Mumford got the quote from Bochenski] This differs from the truth-functional account because it says nothing about when the antecedent is false, which fits in also with the 'supposition' view, where A is presumed. This idea adds necessity.
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Nuclear charge (plus laws) explains electron structure and spectrum, but not vice versa [Hendry]
     Full Idea: Given relevant laws of nature (quantum mechanics, the exclusion principle) nuclear charge determines and explains electronic structure and spectroscopic behaviour, but not vice versa.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: I argue that the first necessary condition for essentialism is a direction of explanation, and here we seem to have one.
19. Language / D. Propositions / 4. Mental Propositions
Thought is unambiguous, and you should stick to what the speaker thinks they are saying [Diod.Cronus, by Gellius]
     Full Idea: No one says or thinks anything ambiguous, and nothing should be held to be being said beyond what the speaker thinks he is saying.
     From: report of Diodorus Cronus (fragments/reports [c.300 BCE]) by Aulus Gellius - Noctes Atticae 11.12.2
     A reaction: A key argument in favour of propositions, implied in this remark, is that propositions are never ambiguous, though the sentences expressing them may be
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
     Full Idea: Archelaus was the first person to say that the universe is boundless.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 02.Ar.3
26. Natural Theory / B. Natural Kinds / 2. Defining Kinds
Maybe two kinds are the same if there is no change of entropy on isothermal mixing [Hendry]
     Full Idea: One suggestion is that any two different substance, however alike, exhibit a positive entropy change on mixing. So absence of entropy change on isothermal mixing provides a criterion of sameness of kind.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: [He cites Paul Needham 2000] This sounds nice, because at a more amateur level we can say that stuff is the same if mixing two samples of it produces no difference. I call it the Upanishads Test.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / a. Scientific essentialism
The nature of an element must survive chemical change, so it is the nucleus, not the electrons [Hendry]
     Full Idea: Whatever earns something membership of the extension of 'krypton' must be a property that can survive chemical change and, therefore, the gain and loss of electrons. Hence what makes it krypton must be a nuclear property.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: A very nice illuminating example of essentialism in chemistry. The 'nature' is what survives through change, just like what Aristotle said, innit?
Maybe the nature of water is macroscopic, and not in the microstructure [Hendry]
     Full Idea: Some deny that that microstructure is what makes it water; substance identity and difference should be determined instead by macroscopic similarities and differences.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: Very plausible. Is the essential nature of human beings to be found in the structure of our cells?
Maybe water is the smallest part of it that still counts as water (which is H2O molecules) [Hendry]
     Full Idea: If they do count as water, individual H2O molecules are the smallest items that can qualify as water on their own account. Hydroxyl ions and protons, in contrast, qualify as water only as part of a larger body.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: As Aristotle might say, this is the homoeomerous aspect of water. This is Hendry's own proposal, and seems rather good.
27. Natural Reality / F. Chemistry / 1. Chemistry
Water continuously changes, with new groupings of molecules [Hendry]
     Full Idea: Macroscopic bodies of water are complex and dynamic congeries of different molecular species, in which there is a constant dissociation of individual molecules, re-association of ions, and formation, growth and disassociation of oligomers.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: The point is that these activities are needed to explain the behaviour of water (such as its conductivity).
Compounds can differ with the same collection of atoms, so structure matters too [Hendry]
     Full Idea: The distinctness of the isomers ethanol (CH3CH2OH, boiling at 78.4°) and dimethyl ether (CH3OCH3, boiling at -24.9°) must lie in their different molecular structures. ...But structure has continuously varying quantities, like bond length and angle.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: [compressed] This seems to imply that what matters is an idealised abstraction of the structure (i.e. its topology), which is a reason for denying that chemistry is reducible to mere physics.
27. Natural Reality / F. Chemistry / 2. Modern Elements
Elements survive chemical change, and are tracked to explain direction and properties [Hendry]
     Full Idea: Elements survive chemical change, and chemical explanations track them from one composite substance to another, thereby explaining both the direction of the chemical change, and the properties of the substances they compose.
     From: Robin F. Hendry (Chemistry [2008], Intro)
     A reaction: [The 16,000th idea of this database, entered on Guy Fawkes' Day 2013]
Defining elements by atomic number allowed atoms of an element to have different masses [Hendry]
     Full Idea: In 1923 elements were defined as populations of atoms with the same nuclear charge (i.e. atomic number), allowing that atoms of the same element may have different masses.
     From: Robin F. Hendry (Chemistry [2008], 'Chem')
     A reaction: The point is that it allowed isotopes of the same element to come under one heading. This is fine for the heavier elements, but a bit dubious for the very light ones (where an isotope makes a bigger difference).
27. Natural Reality / F. Chemistry / 3. Periodic Table
Generally it is nuclear charge (not nuclear mass) which determines behaviour [Hendry]
     Full Idea: In general, nuclear charge is the overwhelming determinant of an element's chemical behaviour, while nuclear mass is a negligible factor.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: The exception is the isotopes of very light elements light hydrogen.
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]
     Full Idea: Archelaus wrote that life on Earth began in a primeval slime.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Malcolm Schofield - Archelaus
     A reaction: This sounds like a fairly clearcut assertion of the production of life by evolution. Darwin's contribution was to propose the mechanism for achieving it. We should honour the name of Archelaus for this idea.