Combining Texts

All the ideas for 'fragments/reports', 'Grundgesetze der Arithmetik 2 (Basic Laws)' and 'Negation'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

2. Reason / A. Nature of Reason / 9. Limits of Reason
Inconsistency doesn't prevent us reasoning about some system [Mares]
     Full Idea: We are able to reason about inconsistent beliefs, stories, and theories in useful and important ways
     From: Edwin D. Mares (Negation [2014], 1)
2. Reason / D. Definition / 2. Aims of Definition
Later Frege held that definitions must fix a function's value for every possible argument [Frege, by Wright,C]
     Full Idea: Frege later became fastidious about definitions, and demanded that they must provide for every possible case, and that no function is properly determined unless its value is fixed for every conceivable object as argument.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903]) by Crispin Wright - Frege's Concept of Numbers as Objects 3.xiv
     A reaction: Presumably definitions come in degrees of completeness, but it seems harsh to describe a desire for the perfect definition as 'fastidious', especially if we are talking about mathematics, rather than defining 'happiness'.
2. Reason / D. Definition / 7. Contextual Definition
We can't define a word by defining an expression containing it, as the remaining parts are a problem [Frege]
     Full Idea: Given the reference (bedeutung) of an expression and a part of it, obviously the reference of the remaining part is not always determined. So we may not define a symbol or word by defining an expression in which it occurs, whose remaining parts are known
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §66)
     A reaction: Dummett cites this as Frege's rejection of contextual definitions, which he had employed in the Grundlagen. I take it not so much that they are wrong, as that Frege decided to set the bar a bit higher.
2. Reason / D. Definition / 11. Ostensive Definition
Only what is logically complex can be defined; what is simple must be pointed to [Frege]
     Full Idea: Only what is logically complex can be defined; what is simple can only be pointed to.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §180), quoted by Harold Hodes - Logicism and Ontological Commits. of Arithmetic p.137
     A reaction: Frege presumably has in mind his treasured abstract objects, such as cardinal numbers. It is hard to see how you could 'point to' anything in the phenomenal world that had atomic simplicity. Hodes calls this a 'desperate Kantian move'.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Intuitionist logic looks best as natural deduction [Mares]
     Full Idea: Intuitionist logic appears most attractive in the form of a natural deduction system.
     From: Edwin D. Mares (Negation [2014], 5.5)
Intuitionism as natural deduction has no rule for negation [Mares]
     Full Idea: In intuitionist logic each connective has one introduction and one elimination rule attached to it, but in the classical system we have to add an extra rule for negation.
     From: Edwin D. Mares (Negation [2014], 5.5)
     A reaction: How very intriguing. Mares says there are other ways to achieve classical logic, but they all seem rather cumbersome.
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
Three-valued logic is useful for a theory of presupposition [Mares]
     Full Idea: One reason for wanting a three-valued logic is to act as a basis of a theory of presupposition.
     From: Edwin D. Mares (Negation [2014], 3.1)
     A reaction: [He cites Strawson 1950] The point is that you can get a result when the presupposition does not apply, as in talk of the 'present King of France'.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Material implication (and classical logic) considers nothing but truth values for implications [Mares]
     Full Idea: The problem with material implication, and classical logic more generally, is that it considers only the truth value of formulas in deciding whether to make an implication stand between them. It ignores everything else.
     From: Edwin D. Mares (Negation [2014], 7.1)
     A reaction: The obvious problem case is conditionals, and relevance is an obvious extra principle that comes to mind.
In classical logic the connectives can be related elegantly, as in De Morgan's laws [Mares]
     Full Idea: Among the virtues of classical logic is the fact that the connectives are related to one another in elegant ways that often involved negation. For example, De Morgan's Laws, which involve negation, disjunction and conjunction.
     From: Edwin D. Mares (Negation [2014], 2.2)
     A reaction: Mares says these enable us to take disjunction or conjunction as primitive, and then define one in terms of the other, using negation as the tool.
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
Excluded middle standardly implies bivalence; attacks use non-contradiction, De M 3, or double negation [Mares]
     Full Idea: On its standard reading, excluded middle tells us that bivalence holds. To reject excluded middle, we must reject either non-contradiction, or ¬(A∧B) ↔ (¬A∨¬B) [De Morgan 3], or the principle of double negation. All have been tried.
     From: Edwin D. Mares (Negation [2014], 2.2)
Standard disjunction and negation force us to accept the principle of bivalence [Mares]
     Full Idea: If we treat disjunction in the standard way and take the negation of a statement A to mean that A is false, accepting excluded middle forces us also to accept the principle of bivalence, which is the dictum that every statement is either true or false.
     From: Edwin D. Mares (Negation [2014], 1)
     A reaction: Mates's point is to show that passively taking the normal account of negation for granted has important implications.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
The connectives are studied either through model theory or through proof theory [Mares]
     Full Idea: In studying the logical connectives, philosophers of logic typically adopt the perspective of either model theory (givng truth conditions of various parts of the language), or of proof theory (where use in a proof system gives the connective's meaning).
     From: Edwin D. Mares (Negation [2014], 1)
     A reaction: [compressed] The commonest proof theory is natural deduction, giving rules for introduction and elimination. Mates suggests moving between the two views is illuminating.
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Many-valued logics lack a natural deduction system [Mares]
     Full Idea: Many-valued logics do not have reasonable natural deduction systems.
     From: Edwin D. Mares (Negation [2014], 1)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Situation semantics for logics: not possible worlds, but information in situations [Mares]
     Full Idea: Situation semantics for logics consider not what is true in worlds, but what information is contained in situations.
     From: Edwin D. Mares (Negation [2014], 6.2)
     A reaction: Since many theoretical physicists seem to think that 'information' might be the most basic concept of a natural ontology, this proposal is obviously rather appealing. Barwise and Perry are the authors of the theory.
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is semantic, but non-contradiction is syntactic [Mares]
     Full Idea: The difference between the principle of consistency and the principle of non-contradiction is that the former must be stated in a semantic metalanguage, whereas the latter is a thesis of logical systems.
     From: Edwin D. Mares (Negation [2014], 2.2)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cardinals say how many, and reals give measurements compared to a unit quantity [Frege]
     Full Idea: The cardinals and the reals are completely disjoint domains. The cardinal numbers answer the question 'How many objects of a given kind are there?', but the real numbers are for measurement, saying how large a quantity is compared to a unit quantity.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §157), quoted by Michael Dummett - Frege philosophy of mathematics Ch.19
     A reaction: We might say that cardinals are digital and reals are analogue. Frege is unusual in totally separating them. They map onto one another, after all. Cardinals look like special cases of reals. Reals are dreams about the gaps between cardinals.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers are ratios of quantities [Frege, by Dummett]
     Full Idea: Frege fixed on construing real numbers as ratios of quantities (in agreement with Newton).
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903]) by Michael Dummett - Frege philosophy of mathematics Ch.20
     A reaction: If 3/4 is the same real number as 6/8, which is the correct ratio? Why doesn't the square root of 9/16 also express it? Why should irrationals be so utterly different from rationals? In what sense are they both 'numbers'?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A number is a class of classes of the same cardinality [Frege, by Dummett]
     Full Idea: For Frege, in 'Grundgesetze', a number is a class of classes of the same cardinality.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903]) by Michael Dummett - Frege Philosophy of Language (2nd ed) Ch.14
Frege's biggest error is in not accounting for the senses of number terms [Hodes on Frege]
     Full Idea: The inconsistency of Grundgesetze was only a minor flaw. Its fundamental flaw was its inability to account for the way in which the senses of number terms are determined. It leaves the reference-magnetic nature of the standard numberer a mystery.
     From: comment on Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903]) by Harold Hodes - Logicism and Ontological Commits. of Arithmetic p.139
     A reaction: A point also made by Hofweber. As a logician, Frege was only concerned with the inferential role of number terms, and he felt he had captured their logical form, but it is when you come to look at numbers in natural language that he seem in trouble.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism misunderstands applications, metatheory, and infinity [Frege, by Dummett]
     Full Idea: Frege's three main objections to radical formalism are that it cannot account for the application of mathematics, that it confuses a formal theory with its metatheory, and it cannot explain an infinite sequence.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §86-137) by Michael Dummett - Frege philosophy of mathematics
     A reaction: The application is because we don't design maths randomly, but to be useful. The third objection might be dealt with by potential infinities (from formal rules). The second objection sounds promising.
Only applicability raises arithmetic from a game to a science [Frege]
     Full Idea: It is applicability alone which elevates arithmetic from a game to the rank of a science.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §91), quoted by Stewart Shapiro - Thinking About Mathematics 6.1.2
     A reaction: This is the basic objection to Formalism. It invites the question of why it is applicable, which platonists like Frege don't seem to answer (though Plato himself has reality modelled on the Forms). This is why I like structuralism.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
For intuitionists there are not numbers and sets, but processes of counting and collecting [Mares]
     Full Idea: For the intuitionist, talk of mathematical objects is rather misleading. For them, there really isn't anything that we should call the natural numbers, but instead there is counting. What intuitionists study are processes, such as counting and collecting.
     From: Edwin D. Mares (Negation [2014], 5.1)
     A reaction: That is the first time I have seen mathematical intuitionism described in a way that made it seem attractive. One might compare it to a metaphysics based on processes. Apparently intuitionists struggle with infinite sets and real numbers.
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
The first demand of logic is of a sharp boundary [Frege]
     Full Idea: The first demand of logic is of a sharp boundary.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §160), quoted by Michael Dummett - Frege philosophy of mathematics Ch.22
     A reaction: Nothing I have read about vagueness has made me doubt Frege's view of this, although precisification might allow you to do logic with vague concepts without having to finally settle where the actual boundaries are.
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
The modern account of real numbers detaches a ratio from its geometrical origins [Frege]
     Full Idea: From geometry we retain the interpretation of a real number as a ratio of quantities or measurement-number; but in more recent times we detach it from geometrical quantities, and from all particular types of quantity.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §159), quoted by Michael Dummett - Frege philosophy of mathematics
     A reaction: Dummett glosses the 'recent' version as by Cantor and Dedekind in 1872. This use of 'detach' seems to me startlingly like the sort of psychological abstractionism which Frege was so desperate to avoid.
18. Thought / E. Abstraction / 8. Abstractionism Critique
If we abstract the difference between two houses, they don't become the same house [Frege]
     Full Idea: If abstracting from the difference between my house and my neighbour's, I were to regard both houses as mine, the defect of the abstraction would soon be made clear. It may, though, be possible to obtain a concept by means of abstraction...
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §99)
     A reaction: Note the important concession at the end, which shows Frege could never deny the abstraction process, despite all the modern protests by Geach and Dummett that he totally rejected it.
19. Language / C. Assigning Meanings / 2. Semantics
In 'situation semantics' our main concepts are abstracted from situations [Mares]
     Full Idea: In 'situation semantics' individuals, properties, facts, and events are treated as abstractions from situations.
     From: Edwin D. Mares (Negation [2014], 6.1)
     A reaction: [Barwise and Perry 1983 are cited] Since I take the process of abstraction to be basic to thought, I am delighted to learn that someone has developed a formal theory based on it. I am immediately sympathetic to situation semantics.
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
     Full Idea: Archelaus was the first person to say that the universe is boundless.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 02.Ar.3
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]
     Full Idea: Archelaus wrote that life on Earth began in a primeval slime.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Malcolm Schofield - Archelaus
     A reaction: This sounds like a fairly clearcut assertion of the production of life by evolution. Darwin's contribution was to propose the mechanism for achieving it. We should honour the name of Archelaus for this idea.