Combining Texts

All the ideas for 'fragments/reports', 'Begriffsschrift' and 'Philosophy of Science: Very Short Intro (2nd ed)'

unexpand these ideas     |    start again     |     specify just one area for these texts


32 ideas

1. Philosophy / F. Analytic Philosophy / 6. Logical Analysis
Frege changed philosophy by extending logic's ability to check the grounds of thinking [Potter on Frege]
     Full Idea: Frege's 1879 logic transformed philosophy because it greatly expanded logic's reach - what thought can achieve unaided - and hence compelled a re-examination of everything previously said about the grounds of thought when logic gives out.
     From: comment on Gottlob Frege (Begriffsschrift [1879]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 Intro
     A reaction: I loved the gloss on logic as 'what thought can achieve unaided'. I largely see logic in terms of what is mechanically computable.
2. Reason / B. Laws of Thought / 1. Laws of Thought
We should not describe human laws of thought, but how to correctly track truth [Frege, by Fisher]
     Full Idea: Frege disagree that logic should merely describe the laws of thought - how people actually did reason. Logic is essentially normative, not descriptive. We want the one logic which successfully tracks the truth.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Jennifer Fisher - On the Philosophy of Logic 1.III
     A reaction: This explains Frege's sustained attack on psychologism, and it also explains we he ended up as a platonist about logic - because he wanted its laws to be valid independently of human thinking. A step too far, perhaps. Brains are truth machines.
4. Formal Logic / C. Predicate Calculus PC / 1. Predicate Calculus PC
I don't use 'subject' and 'predicate' in my way of representing a judgement [Frege]
     Full Idea: A distinction of subject and predicate finds no place in my way of representing a judgement.
     From: Gottlob Frege (Begriffsschrift [1879], §03)
     A reaction: Perhaps this sentence could be taken as the beginning of modern analytical philosophy. The old view doesn't seem to me entirely redundant - merely replaced by a much more detailed analysis of what makes a 'subject' and what makes a 'predicate'.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
For Frege, 'All A's are B's' means that the concept A implies the concept B [Frege, by Walicki]
     Full Idea: 'All A's are B's' meant for Frege that the concept A implies the concept B, or that to be A implies also to be B. Moreover this applies to arbitrary x which happens to be A.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Michal Walicki - Introduction to Mathematical Logic History D.2
     A reaction: This seems to hit the renate/cordate problem. If all creatures with hearts also have kidneys, does that mean that being enhearted logically implies being kidneyfied? If all chimps are hairy, is that a logical requirement? Is inclusion implication?
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Frege has a judgement stroke (vertical, asserting or judging) and a content stroke (horizontal, expressing) [Frege, by Weiner]
     Full Idea: Frege distinguished between asserting a proposition and expressing it, and he introduced the judgement stroke (a small vertical line, assertion) and the content stroke (a long horizontal line, expression) to represent them.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Joan Weiner - Frege Ch.3
     A reaction: There are also strokes for conditional and denial.
The laws of logic are boundless, so we want the few whose power contains the others [Frege]
     Full Idea: Since in view of the boundless multitude of laws that can be enunciated we cannot list them all, we cannot achieve completeness except by searching out those that, by their power, contain all of them.
     From: Gottlob Frege (Begriffsschrift [1879], §13)
     A reaction: He refers to these laws in the previous sentence as the 'core'. His talk of 'power' is music to my ears, since it implies a direction of explanation. Burge says the power is that of defining other concepts.
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
In 1879 Frege developed second order logic [Frege, by Putnam]
     Full Idea: By 1879 Frege had discovered an algorithm, a mechanical proof procedure, that embraces what is today standard 'second order logic'.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Hilary Putnam - Reason, Truth and History Ch.5
     A reaction: Note that Frege did more than introduce quantifiers, and the logic of predicates.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Frege replaced Aristotle's subject/predicate form with function/argument form [Frege, by Weiner]
     Full Idea: Frege's regimentation is based on the view of the simplest sort of statement as having, not subject/predicate form (as in Aristotle), but function/argument form.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Joan Weiner - Frege
     A reaction: This looks like being a crucial move into the modern world, where one piece of information is taken in and dealt with, as in computer procedures. Have educated people reorganised their minds along Fregean lines?
5. Theory of Logic / G. Quantification / 1. Quantification
A quantifier is a second-level predicate (which explains how it contributes to truth-conditions) [Frege, by George/Velleman]
     Full Idea: The contribution of the quantifier to the truth conditions of sentences of which it is a part cannot be adequately explained if it is treated as other than a second-level predicate (for instance, if it is viewed as name).
     From: report of Gottlob Frege (Begriffsschrift [1879]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.2
     A reaction: They suggest that this makes it something like a 'property of properties'. With this account it becomes plausible to think of numbers as quantifiers (since they do, after all, specify quantities).
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
For Frege the variable ranges over all objects [Frege, by Tait]
     Full Idea: For Frege the variable ranges over all objects.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by William W. Tait - Frege versus Cantor and Dedekind XII
     A reaction: The point is that Frege had not yet seen the necessity to define the domain of quantification, and this leads him into various difficulties.
Frege's domain for variables is all objects, but modern interpretations first fix the domain [Dummett on Frege]
     Full Idea: For Frege there is no need to specify the domain of the individual variables, which is taken as the totality of all objects. This contrasts with the standard notion of an interpretation, which demands that we first fix the domain.
     From: comment on Gottlob Frege (Begriffsschrift [1879]) by Michael Dummett - Frege Philosophy of Language (2nd ed) Ch.14
     A reaction: What intrigues me is how domains of quantification shift according to context in ordinary usage, even in mid-sentence. I ought to go through every idea in this database, specifying its domain of quantification. Any volunteers?
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
Frege introduced quantifiers for generality [Frege, by Weiner]
     Full Idea: In order to express generality, Frege introduced quantifier notation.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Joan Weiner - Frege
     A reaction: This is the birth of predicate logic, beloved of analytical philosophers (but of no apparent interest to phenomenalists, deconstructionists, existentialists?). Generality is what you get from induction (which is, of course, problematic).
Frege reduced most quantifiers to 'everything' combined with 'not' [Frege, by McCullogh]
     Full Idea: Frege treated 'everything' as basic, and suggested ways of recasting propositions containing other quantifiers so that this was the only one remaining. He recast 'something' as 'at least one thing', and defined this in terms of 'everything' and 'not'.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Gregory McCullogh - The Game of the Name 1.6
     A reaction: Extreme parsimony seems highly desirable in logic as well as ontology, but it can lead to frustrations, especially over the crucial question of the existence of things quantified over. See Idea 6068.
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
Proof theory began with Frege's definition of derivability [Frege, by Prawitz]
     Full Idea: Frege's formal definition of derivability is perhaps the first investigation in general proof theory.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Dag Prawitz - Gentzen's Analysis of First-Order Proofs 2 n2
     A reaction: In 'On General Proof Theory §1' Prawitz says "proof theory originated with Hilbert" in 1900. Presumably Frege offered a theory, and then Hilbert saw it as a general project.
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Frege produced axioms for logic, though that does not now seem the natural basis for logic [Frege, by Kaplan]
     Full Idea: Frege's work supplied a set of axioms for logic itself, at least partly because it was a well-known way of presenting the foundations in other disciplines, especially mathematics, but it does not nowadays strike us as natural for logic.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by David Kaplan - Dthat 5.1
     A reaction: What Bostock has in mind is the so-called 'natural' deduction systems, which base logic on rules of entailment, rather than on a set of truths. The axiomatic approach uses a set of truths, plus the idea of possible contradictions.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
It may be possible to define induction in terms of the ancestral relation [Frege, by Wright,C]
     Full Idea: Frege's account of the ancestral has made it possible, in effect, to define the natural numbers as entities for which induction holds.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Crispin Wright - Frege's Concept of Numbers as Objects 4.xix
     A reaction: This is the opposite of the approach in the Peano Axioms, where induction is used to define the natural numbers.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Frege's logic has a hierarchy of object, property, property-of-property etc. [Frege, by Smith,P]
     Full Idea: Frege's general logical system involves a type hierarchy, distinguishing objects from properties from properties-of-properties etc., with every item belonging to a determinate level.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Peter Smith - Intro to Gödel's Theorems 14.1
     A reaction: The Theory of Types went on to apply this hierarchy to classes, where Frege's disastrous Basic Law V flattens the hierarchy of classes, putting them on the same level (Smith p.119)
7. Existence / A. Nature of Existence / 1. Nature of Existence
Existence is not a first-order property, but the instantiation of a property [Frege, by Read]
     Full Idea: When Kant said that existence was not a property, what he meant was, according to Frege, that existence is not a first-order property - it is not a property of individuals but a property of properties, that the property has an instance.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Stephen Read - Thinking About Logic Ch.5
7. Existence / C. Structure of Existence / 2. Reduction
Multiple realisability is said to make reduction impossible [Okasha]
     Full Idea: Philosophers have often invoked multiple realisability to explain why psychology cannot be reduced to physics or chemistry, but in principle the explanation works for any higher-level science.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 3)
     A reaction: He gives the example of a 'cell' in biology, which can be implemented in all sorts of ways. Presumably that can be reduced to many sorts of physics, but not just to one sort. The high level contains patterns that vanish at the low level.
14. Science / A. Basis of Science / 3. Experiment
Not all sciences are experimental; astronomy relies on careful observation [Okasha]
     Full Idea: Not all sciences are experimental - astronomers obviously cannot do experiments on the heavens, but have to content themselves with careful observation instead.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 1)
     A reaction: Biology too. Psychology tries hard to be experimental, but I doubt whether the main theories emerge from experiments.
Randomised Control Trials have a treatment and a control group, chosen at random [Okasha]
     Full Idea: In the Randomised Controlled Trial for a new drug, patients are divided at random into a treatment group who receive the drug, and a control group who do not. Randomisation is important to eliminate confounding factors.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: [compressed] Devised in the 1930s, and a major breakthrough in methodology for that kind of trial. Psychologists use the method all the time. Some theorists say it is the only reliable method.
14. Science / A. Basis of Science / 6. Falsification
The discoverers of Neptune didn't change their theory because of an anomaly [Okasha]
     Full Idea: Adams and Leverrier began with Newton's theory of gravity, which made an incorrect prediction about the orbit of Uranus. They explained away the conflicting observations by postulating a new planet, Neptune.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 1)
     A reaction: The falsificationists can say that the anomalous observation did not falsify the theory, because they didn't know quite what they were observing. It was not in fact an anomaly for Newtonian theory at all.
Science mostly aims at confirming theories, rather than falsifying them [Okasha]
     Full Idea: The goal of science is not solely to refute theories, but also to determine which theories are true (or probably true). When a scientist collects data …they are trying to show that their own theory is true.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: This is the aim of 'accommodation' to a wide set of data, rather than prediction or refutation.
14. Science / B. Scientific Theories / 1. Scientific Theory
Theories with unobservables are underdetermined by the evidence [Okasha]
     Full Idea: According to anti-realists, scientific theories which posit unobservable entities are underdetermined by the empirical data - there will always be a number of competing theories which can account for the data equally well.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 4)
     A reaction: The fancy version is Putnam's model theoretic argument, explored by Tim Button. The reply, apparently, is that there are other criteria for theory choice, apart from the data. And we don't have to actually observe everything in a theory.
14. Science / B. Scientific Theories / 5. Commensurability
Two things can't be incompatible if they are incommensurable [Okasha]
     Full Idea: If two things are incommensurable they cannot be incompatible.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 5)
     A reaction: Kuhn had claimed that two rival theories are incompatible, which forces the paradigm shift. He can't stop the slide off into total relativism. The point is there cannot be a conflict if there cannot even be a comparison.
14. Science / C. Induction / 1. Induction
Induction is inferences from examined to unexamined instances of a given kind [Okasha]
     Full Idea: Some philosophers use 'inductive' to just mean not deductive, …but we reserve it for inferences from examined to unexamined instances of a given kind.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: The instances must at least be comparable. Must you know the kind before you start? Surely you can examine a sequence of things, trying to decide whether or not they are of one kind? Is checking the uniformity of a kind induction?
14. Science / C. Induction / 6. Bayes's Theorem
If the rules only concern changes of belief, and not the starting point, absurd views can look ratiional [Okasha]
     Full Idea: If the only objective constraints concern how we should change our credences, but what our initial credences should be is entirely subjective, then individuals with very bizarre opinions about the world will count as perfectly rational.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: The important rationality has to be the assessement of a diverse batch of evidence, for which there can never be any rules or mathematics.
19. Language / C. Assigning Meanings / 4. Compositionality
Frege's account was top-down and decompositional, not bottom-up and compositional [Frege, by Potter]
     Full Idea: Frege's account was top-down, not bottom-up: he aimed to decompose and discern function-argument structure in already existing sentences, not to explain how those sentences acquired their meanings in the first place.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 03 'Func'
     A reaction: This goes with the holistic account of meaning, which leads to Quine's gavagai and Kuhn's obfuscation of science. I recommend compositionality for everthing.
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
     Full Idea: Archelaus was the first person to say that the universe is boundless.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 02.Ar.3
27. Natural Reality / A. Classical Physics / 1. Mechanics / b. Laws of motion
Galileo refuted the Aristotelian theory that heavier objects fall faster [Okasha]
     Full Idea: Galileo's most enduring contribution lay in mechanics, where he refuted the Aristotelian theory that heavier bodies fall faster than lighter.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: This must the first idea in the theory of mechanics, allowing mathematical treatment and accurate comparisons.
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]
     Full Idea: Archelaus wrote that life on Earth began in a primeval slime.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Malcolm Schofield - Archelaus
     A reaction: This sounds like a fairly clearcut assertion of the production of life by evolution. Darwin's contribution was to propose the mechanism for achieving it. We should honour the name of Archelaus for this idea.
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
The predicate 'exists' is actually a natural language expression for a quantifier [Frege, by Weiner]
     Full Idea: On Frege's logical analysis, the predicate 'exists' is actually a natural language expression for a quantifier.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Joan Weiner - Frege Ch.8
     A reaction: However see Idea 6067, for McGinn's alternative view of quantifiers. In the normal conventions of predicate logic it may be that existence is treated as a quantifier, but that is not the same as saying that existence just IS a quantifier.