Combining Texts

All the ideas for 'fragments/reports', 'Introduction to the Philosophy of Mathematics' and 'Goodbye Descartes'

unexpand these ideas     |    start again     |     specify just one area for these texts


36 ideas

1. Philosophy / B. History of Ideas / 5. Later European Thought
Logic was merely a branch of rhetoric until the scientific 17th century [Devlin]
     Full Idea: Until the rise of what we call the scientific method in the seventeenth century, logic was regarded largely as one aspect of rhetoric - a study of how one person't argument could convince another.
     From: Keith Devlin (Goodbye Descartes [1997], Ch.11)
     A reaction: This may well give the main reason why the Greeks invented logic in the first place. Aristotle wrote a book on rhetoric, and that was where the money was. Leibniz is clearly a key figure in the change of attitude.
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
'No councillors are bankers' and 'All bankers are athletes' implies 'Some athletes are not councillors' [Devlin]
     Full Idea: Most people find it hard to find any conclusion that fits the following premises: 'No councillors are bankers', and 'All bankers are athletes'. There is a valid conclusion ('Some athletes are not councillors') but it takes quite an effort to find it.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 2)
     A reaction: A nice illustration of the fact that syllogistic logic is by no means automatic and straightforward. There is a mechanical procedure, but a lot of intuition and common sense is also needed.
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Modern propositional inference replaces Aristotle's 19 syllogisms with modus ponens [Devlin]
     Full Idea: Where Aristotle had 19 different inference rules (his valid syllogisms), modern propositional logic carries out deductions using just one rule of inference: modus ponens.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 4)
     A reaction: At first glance it sounds as if Aristotle's guidelines might be more useful than the modern one, since he tells you something definite and what implies what, where modus ponens just seems to define the word 'implies'.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Predicate logic retains the axioms of propositional logic [Devlin]
     Full Idea: Since predicate logic merely extends propositional logic, all the axioms of propositional logic are axioms of predicate logic.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 4)
     A reaction: See Idea 7798 for the axioms.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Rejecting double negation elimination undermines reductio proofs [Colyvan]
     Full Idea: The intuitionist rejection of double negation elimination undermines the important reductio ad absurdum proof in classical mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
Showing a disproof is impossible is not a proof, so don't eliminate double negation [Colyvan]
     Full Idea: In intuitionist logic double negation elimination fails. After all, proving that there is no proof that there can't be a proof of S is not the same thing as having a proof of S.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: I do like people like Colyvan who explain things clearly. All of this difficult stuff is understandable, if only someone makes the effort to explain it properly.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Situation theory is logic that takes account of context [Devlin]
     Full Idea: In many respects, situation theory is an extension of classical logic that takes account of context.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 8)
     A reaction: John Barwise is cited as the parent of this movement. Many examples show that logical form is very hard to pin down, because word-meaning depends on context (e.g. 'several crumbs' differs from 'several mountains').
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Golden ages: 1900-1960 for pure logic, and 1950-1985 for applied logic [Devlin]
     Full Idea: The period from 1900 to about 1960 could be described as the golden age of 'pure' logic, and 1950 to 1985 the golden age of 'applied' logic (e.g. applied to everyday reasoning, and to theories of language).
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 4)
     A reaction: Why do we always find that we have just missed the Golden Age? However this supports the uneasy feeling that the golden age for all advances in human knowledge is just coming to an end. Biology, including the brain, is the last frontier.
Montague's intensional logic incorporated the notion of meaning [Devlin]
     Full Idea: Montague's intensional logic was the first really successful attempt to develop a mathematical framework that incorporates the notion of meaning.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 8)
     A reaction: Previous logics, led by Tarski, had flourished by sharply dividing meaning from syntax, and concentrating on the latter.
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Where a conditional is purely formal, an implication implies a link between premise and conclusion [Devlin]
     Full Idea: Implication involves some form of link or causality between the antecedent and the consequent of an if-then; normally it says that the conclusion is a consequence of the premise (where conditionals are just defined by 'true' and 'false').
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 2)
     A reaction: This distinction is a key one when discussing 'If-then' sentences. Some are merely formal conditionals, but others make real claims about where you can get to from where you are.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle says P or not-P; bivalence says P is either true or false [Colyvan]
     Full Idea: The law of excluded middle (for every proposition P, either P or not-P) must be carefully distinguished from its semantic counterpart bivalence, that every proposition is either true or false.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: So excluded middle makes no reference to the actual truth or falsity of P. It merely says P excludes not-P, and vice versa.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Sentences of apparent identical form can have different contextual meanings [Devlin]
     Full Idea: "Safety goggles must be worn in the building" is clear enough, but "dogs must always be carried on the escalator" doesn't require us to head off in search of a dog.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 1)
     A reaction: A nice illustration of how the requirements of logical form will often take us beyond the strict and literal meaning of a sentence, into context, tone, allusion and subjective aspects.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
     Full Idea: Löwenheim proved that if a first-order sentence has a model at all, it has a countable model. ...Skolem generalised this result to systems of first-order sentences.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are 'categorical' if all of their models are isomorphic [Colyvan]
     Full Idea: A set of axioms is said to be 'categorical' if all models of the axioms in question are isomorphic.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
     A reaction: The best example is the Peano Axioms, which are 'true up to isomorphism'. Set theory axioms are only 'quasi-isomorphic'.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
Space and time are atomic in the arrow, and divisible in the tortoise [Devlin]
     Full Idea: The arrow paradox starts with the assumption that space and time are atomic; the tortoise starts with the opposite assumption that space and time are infinitely divisible.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 2)
     A reaction: Aquinas similarly covers all options (the cosmos has a beginning, or no beginning). The nature of movement in a space which involves quantum leaps remains metaphysically puzzling. Where is a particle at half of the Planck time?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinal numbers represent order relations [Colyvan]
     Full Idea: Ordinal numbers represent order relations.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.2.3 n17)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Intuitionists only accept a few safe infinities [Colyvan]
     Full Idea: For intuitionists, all but the smallest, most well-behaved infinities are rejected.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: The intuitionist idea is to only accept what can be clearly constructed or proved.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Infinitesimals were sometimes zero, and sometimes close to zero [Colyvan]
     Full Idea: The problem with infinitesimals is that in some places they behaved like real numbers close to zero but in other places they behaved like zero.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.2)
     A reaction: Colyvan gives an example, of differentiating a polynomial.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Reducing real numbers to rationals suggested arithmetic as the foundation of maths [Colyvan]
     Full Idea: Given Dedekind's reduction of real numbers to sequences of rational numbers, and other known reductions in mathematics, it was tempting to see basic arithmetic as the foundation of mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.1)
     A reaction: The reduction is the famous Dedekind 'cut'. Nowadays theorists seem to be more abstract (Category Theory, for example) instead of reductionist.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Transfinite induction moves from all cases, up to the limit ordinal [Colyvan]
     Full Idea: Transfinite inductions are inductive proofs that include an extra step to show that if the statement holds for all cases less than some limit ordinal, the statement also holds for the limit ordinal.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1 n11)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical proofs are using set theory, but without saying so [Colyvan]
     Full Idea: Most mathematical proofs, outside of set theory, do not explicitly state the set theory being employed.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.1)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism say only 'up to isomorphism' matters because that is all there is to it [Colyvan]
     Full Idea: Structuralism is able to explain why mathematicians are typically only interested in describing the objects they study up to isomorphism - for that is all there is to describe.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If 'in re' structures relies on the world, does the world contain rich enough structures? [Colyvan]
     Full Idea: In re structuralism does not posit anything other than the kinds of structures that are in fact found in the world. ...The problem is that the world may not provide rich enough structures for the mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
     A reaction: You can perceive a repeating pattern in the world, without any interest in how far the repetitions extend.
13. Knowledge Criteria / E. Relativism / 5. Language Relativism
People still say the Hopi have no time concepts, despite Whorf's later denial [Devlin]
     Full Idea: The Hopi time myth does not appear to have been stopped for a moment by the fact that Whorf himself subsequently wrote that the Hopi language does indeed have words for past, present, and future
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 5)
     A reaction: Arguments for relativism based on the Hopi seem now to be thoroughly discredited. Sensible people never believed them in the first place.
14. Science / C. Induction / 6. Bayes's Theorem
Probability supports Bayesianism better as degrees of belief than as ratios of frequencies [Colyvan]
     Full Idea: Those who see probabilities as ratios of frequencies can't use Bayes's Theorem if there is no objective prior probability. Those who accept prior probabilities tend to opt for a subjectivist account, where probabilities are degrees of belief.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.8)
     A reaction: [compressed]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Mathematics can reveal structural similarities in diverse systems [Colyvan]
     Full Idea: Mathematics can demonstrate structural similarities between systems (e.g. missing population periods and the gaps in the rings of Saturn).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
     A reaction: [Colyvan expounds the details of his two examples] It is these sorts of results that get people enthusiastic about the mathematics embedded in nature. A misunderstanding, I think.
14. Science / D. Explanation / 2. Types of Explanation / f. Necessity in explanations
Mathematics can show why some surprising events have to occur [Colyvan]
     Full Idea: Mathematics can show that under a broad range of conditions, something initially surprising must occur (e.g. the hexagonal structure of honeycomb).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
14. Science / D. Explanation / 2. Types of Explanation / m. Explanation by proof
Proof by cases (by 'exhaustion') is said to be unexplanatory [Colyvan]
     Full Idea: Another style of proof often cited as unexplanatory are brute-force methods such as proof by cases (or proof by exhaustion).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
Reductio proofs do not seem to be very explanatory [Colyvan]
     Full Idea: One kind of proof that is thought to be unexplanatory is the 'reductio' proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: Presumably you generate a contradiction, but are given no indication of why the contradiction has arisen? Tracking back might reveal the source of the problem? Colyvan thinks reductio can be explanatory.
If inductive proofs hold because of the structure of natural numbers, they may explain theorems [Colyvan]
     Full Idea: It might be argued that any proof by induction is revealing the explanation of the theorem, namely, that it holds by virtue of the structure of the natural numbers.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: This is because induction characterises the natural numbers, in the Peano Axioms.
Can a proof that no one understands (of the four-colour theorem) really be a proof? [Colyvan]
     Full Idea: The proof of the four-colour theorem raises questions about whether a 'proof' that no one understands is a proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.6)
     A reaction: The point is that the theorem (that you can colour countries on a map with just four colours) was proved with the help of a computer.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Mathematical generalisation is by extending a system, or by abstracting away from it [Colyvan]
     Full Idea: One type of generalisation in mathematics extends a system to go beyond what is was originally set up for; another kind involves abstracting away from some details in order to capture similarities between different systems.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.2)
19. Language / C. Assigning Meanings / 1. Syntax
How do we parse 'time flies like an arrow' and 'fruit flies like an apple'? [Devlin]
     Full Idea: How do people identify subject and verb in the sentences "time flies like an arrow" and "fruit flies like an apple"?
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 1)
     A reaction: A nice illustration of the fact that even if we have an innate syntax mechanism, it won't work without some semantics, and some experience of the environmental context of utterances.
19. Language / D. Propositions / 2. Abstract Propositions / a. Propositions as sense
The distinction between sentences and abstract propositions is crucial in logic [Devlin]
     Full Idea: The distinction between sentences and the abstract propositions that they express is one of the key ideas of logic. A logical argument consists of propositions, assembled together in a systematic fashion.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 2)
     A reaction: He may claim that arguments consist of abstract propositions, but they always get expressed in sentences. However, the whole idea of logical form implies the existence of propositions - there is something which a messy sentence 'really' says.
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
     Full Idea: Archelaus was the first person to say that the universe is boundless.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 02.Ar.3
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]
     Full Idea: Archelaus wrote that life on Earth began in a primeval slime.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Malcolm Schofield - Archelaus
     A reaction: This sounds like a fairly clearcut assertion of the production of life by evolution. Darwin's contribution was to propose the mechanism for achieving it. We should honour the name of Archelaus for this idea.