Combining Texts

All the ideas for 'fragments/reports', 'Ontology and Mathematical Truth' and 'What is Logic?'

unexpand these ideas     |    start again     |     specify just one area for these texts


21 ideas

2. Reason / D. Definition / 3. Types of Definition
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
'Impure' sets have a concrete member, while 'pure' (abstract) sets do not [Jubien]
     Full Idea: Any set with a concrete member is 'impure'. 'Pure' sets are those that are not impure, and are paradigm cases of abstract entities, such as the sort of sets apparently dealt with in Zermelo-Fraenkel (ZF) set theory.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.116)
     A reaction: [I am unclear whether Jubien is introducing this distinction] This seems crucial in accounts of mathematics. On the one had arithmetic can be built from Millian pebbles, giving impure sets, while logicists build it from pure sets.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A model is 'fundamental' if it contains only concrete entities [Jubien]
     Full Idea: A first-order model can be viewed as a kind of ordered set, and if the domain of the model contains only concrete entities then it is a 'fundamental' model.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.117)
     A reaction: An important idea. Fundamental models are where the world of logic connects with the physical world. Any account of relationship between fundamental models and more abstract ones tells us how thought links to world.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
There couldn't just be one number, such as 17 [Jubien]
     Full Idea: It makes no sense to suppose there might be just one natural number, say seventeen.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.113)
     A reaction: Hm. Not convinced. If numbers are essentially patterns, we might only have the number 'twelve', because we had built our religion around anything which exhibited that form (in any of its various arrangements). Nice point, though.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
The subject-matter of (pure) mathematics is abstract structure [Jubien]
     Full Idea: The subject-matter of (pure) mathematics is abstract structure per se.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.115)
     A reaction: This is the Structuralist idea beginning to take shape after Benacerraf's launching of it. Note that Jubien gets there by his rejection of platonism, whereas some structuralist have given a platonist interpretation of structure.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
If we all intuited mathematical objects, platonism would be agreed [Jubien]
     Full Idea: If the intuition of mathematical objects were general, there would be no real debate over platonism.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.111)
     A reaction: It is particularly perplexing when Gödel says that his perception of them is just like sight or smell, since I have no such perception. How do you individuate very large numbers, or irrational numbers, apart from writing down numerals?
How can pure abstract entities give models to serve as interpretations? [Jubien]
     Full Idea: I am unable to see how the mere existence of pure abstract entities enables us to concoct appropriate models to serve as interpretations.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.111)
     A reaction: Nice question. It is always assumed that once we have platonic realm, that everything else follows. Even if we are able to grasp the objects, despite their causal inertness, we still have to discern innumerable relations between them.
Since mathematical objects are essentially relational, they can't be picked out on their own [Jubien]
     Full Idea: The essential properties of mathematical entities seem to be relational, ...so we make no progress unless we can pick out some mathematical entities wihout presupposing other entities already picked out.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.112)
     A reaction: [compressed] Jubien is a good critic of platonism. He has identified the problem with Frege's metaphor of a 'borehole', where we discover delightful new properties of numbers simply by reaching them.
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
The empty set is the purest abstract object [Jubien]
     Full Idea: The empty set is the pure abstract object par excellence.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.118 n8)
     A reaction: So a really good PhD on the empty set could crack the whole nature of reality. Get to work, whoever you are!
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
     Full Idea: Archelaus was the first person to say that the universe is boundless.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 02.Ar.3
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]
     Full Idea: Archelaus wrote that life on Earth began in a primeval slime.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Malcolm Schofield - Archelaus
     A reaction: This sounds like a fairly clearcut assertion of the production of life by evolution. Darwin's contribution was to propose the mechanism for achieving it. We should honour the name of Archelaus for this idea.