Combining Texts

All the ideas for 'fragments/reports', 'Guidebook to Wittgenstein's Tractatus' and 'Things and Their Parts'

unexpand these ideas     |    start again     |     specify just one area for these texts


17 ideas

1. Philosophy / H. Continental Philosophy / 3. Hermeneutics
Interpreting a text is representing it as making sense [Morris,M]
     Full Idea: Interpreting a text is a matter of making sense of it. And to make sense of a text is to represent it as making sense.
     From: Michael Morris (Guidebook to Wittgenstein's Tractatus [2008], Intro.2)
     A reaction: 'Making sense' is obviously not a very precise or determinate concept. It is probably better to say that the process is 'trying' to make sense of the text, because most texts don't totally make sense.
4. Formal Logic / G. Formal Mereology / 1. Mereology
Part and whole contribute asymmetrically to one another, so must differ [Fine,K]
     Full Idea: The whole identity of a part is relevant to whether it is a part, but the identity of the whole makes a part a part. The whole part belongs to the whole as a part. The standard account in terms of time-slices fails to respect this part/whole asymmetry.
     From: Kit Fine (Things and Their Parts [1999], §2)
     A reaction: Hard to follow, but I think the asymmetry is that the wholeness of the part contributes to the wholeness of the whole, while the wholeness of the whole contributes to the parthood of the part. Wholeness does different jobs in different directions. OK?
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
Bipolarity adds to Bivalence the capacity for both truth values [Morris,M]
     Full Idea: According to the Principle of Bipolarity, every meaningful sentence must be capable both of being true and of being false. It is not enough merely that every sentence must be either true or false (which is Bivalence).
     From: Michael Morris (Guidebook to Wittgenstein's Tractatus [2008], 3D)
     A reaction: It is said that early Wittgenstein endorses this. That is, in addition to being true, the sentence must be capable of falsehood (and vice versa). This seems to be flirting with the verification principle. I presume it is 'affirmative' sentences.
5. Theory of Logic / G. Quantification / 1. Quantification
Conjunctive and disjunctive quantifiers are too specific, and are confined to the finite [Morris,M]
     Full Idea: There are two problems with defining the quantifiers in terms of conjunction and disjunction. The general statements are unspecific, and do not say which things have the properties, and also they can't range over infinite objects.
     From: Michael Morris (Guidebook to Wittgenstein's Tractatus [2008], 5C)
     A reaction: That is, the universal quantifier is lots of ands, and the existential is lots of ors. If there only existed finite objects, then naming them all would be universal, and the infinite wouldn't be needed.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting needs to distinguish things, and also needs the concept of a successor in a series [Morris,M]
     Full Idea: Just distinguishing things is not enough for counting (and hence arithmetic). We need the crucial extra notion of the successor in a series of some kind.
     From: Michael Morris (Guidebook to Wittgenstein's Tractatus [2008], Intro.5)
     A reaction: This is a step towards the Peano Axioms of arithmetic. The successors could be fingers and toes, taken in a conventional order, and matched one-to-one to the objects. 'My right big toe of cows' means 16 cows (but non-verbally).
Discriminating things for counting implies concepts of identity and distinctness [Morris,M]
     Full Idea: The discrimination of things for counting needs to bring with it the notion of identity (and, correlatively, distinctness).
     From: Michael Morris (Guidebook to Wittgenstein's Tractatus [2008], Intro.5)
     A reaction: Morris is exploring how practices like counting might reveal necessary truths about the world.
To count, we must distinguish things, and have a series with successors in it [Morris,M]
     Full Idea: Distinguishing between things is not enough for counting. …We need the crucial extra notion of a successor in a series of a certain kind.
     From: Michael Morris (Guidebook to Wittgenstein's Tractatus [2008], Intro)
     A reaction: This is the thinking that led to the Dedekind-Peano axioms for arithmetic. E.g. each series member can only have one successor. There is an unformalisable assumption that the series can then be applied to the things.
9. Objects / B. Unity of Objects / 1. Unifying an Object / c. Unity as conceptual
Hierarchical set membership models objects better than the subset or aggregate relations do [Fine,K]
     Full Idea: It is the hierarchical conception of sets and their members, rather than the linear conception of set and subset or of aggregate and component, that provides us with the better model for the structure of part-whole in its application to material things.
     From: Kit Fine (Things and Their Parts [1999], §5)
     A reaction: His idea is to give some sort of internal structure. He says of {a,b,c,d} that we can create subsets {a,b} and {c,d} from that. But {{a,b},{c,d}} has given member sets, and he is looking for 'natural' divisions between the members.
9. Objects / C. Structure of Objects / 3. Matter of an Object
The matter is a relatively unstructured version of the object, like a set without membership structure [Fine,K]
     Full Idea: The wood is, as it were, a relatively unstructured version of the tree, just as the set {a,b,c,d} is an unstructured counterpart of the set {{a,b},{c,d}}.
     From: Kit Fine (Things and Their Parts [1999], §5)
     A reaction: He is trying to give a modern logicians' account of the Aristotelian concept of 'form' (as applied to matter). It is part of the modern project that objects must be connected to the formalism of mereology or set theory. If it works, are we thereby wiser?
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
A 'temporary' part is a part at one time, but may not be at another, like a carburetor [Fine,K]
     Full Idea: First, a thing can be a part in a way that is relative to a time, for example, that a newly installed carburettor is now part of my car, whereas earlier it was not. (This will be called a 'temporary' part).
     From: Kit Fine (Things and Their Parts [1999], Intro)
     A reaction: [Cf Idea 13327 for the 'second' concept of part] I'm immediately uneasy. Being a part seems to be a univocal concept. He seems to be distinguishing parts which are necessary for identity from those which aren't. Fine likes to define by example.
A 'timeless' part just is a part, not a part at some time; some atoms are timeless parts of a water molecule [Fine,K]
     Full Idea: Second, an object can be a part of another in a way that is not relative to time ('timeless'). It is not appropriate to ask when it is a part. Thus pants and jacket are parts of the suit, atoms of a water molecule, and two pints part of a quart of milk.
     From: Kit Fine (Things and Their Parts [1999], Intro)
     A reaction: [cf Idea 13326 for the other concept of 'part'] Again I am uneasy that 'part' could have two meanings. A Life Member is a member in the same way that a normal paid up member is a member.
9. Objects / C. Structure of Objects / 8. Parts of Objects / b. Sums of parts
An 'aggregative' sum is spread in time, and exists whenever a component exists [Fine,K]
     Full Idea: In the 'aggregative' understanding of a sum, it is spread out in time, so that exists whenever any of its components exists (just as it is located at any time wherever any of its components are located).
     From: Kit Fine (Things and Their Parts [1999], §1)
     A reaction: This works particularly well for something like an ancient forest, which steadily changes its trees. On that view, though, the ship which has had all of its planks replaced will be the identical single sum of planks all the way through. Fine agrees.
An 'compound' sum is not spread in time, and only exists when all the components exists [Fine,K]
     Full Idea: In the 'compound' notion of sum, the mereological sum is spread out only in space, not also in time. For it to exist at a time, all of its components must exist at the time.
     From: Kit Fine (Things and Their Parts [1999], §1)
     A reaction: It is hard to think of anything to which this applies, apart from for a classical mereologist. Named parts perhaps, like Tom, Dick and Harry. Most things preserve sum identity despite replacement of parts by identical components.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
Two sorts of whole have 'rigid embodiment' (timeless parts) or 'variable embodiment' (temporary parts) [Fine,K]
     Full Idea: I develop a version of hylomorphism, in which the theory of 'rigid embodiment' provides an account of the timeless relation of part, and the theory of 'variable embodiment' is an account of the temporary relation. We must accept two new kinds of whole.
     From: Kit Fine (Things and Their Parts [1999], Intro)
     A reaction: [see Idea 13326 and Idea 13327 for the two concepts of 'part'] This is easier to take than the two meanings for 'part'. Since Aristotle, everyone has worried about true wholes (atoms, persons?) and looser wholes (houses).
19. Language / D. Propositions / 1. Propositions
There must exist a general form of propositions, which are predictabe. It is: such and such is the case [Morris,M]
     Full Idea: The existence of a general propositional form is proved by the fact that there cannot be a proposition whose form could not have been foreseen (i.e. constructed). The general form of the proposition is: Such and such is the case.
     From: Michael Morris (Guidebook to Wittgenstein's Tractatus [2008], 4.5)
     A reaction: [last bit in Ogden translation] LW eventually expresses this symbolically. We could just say a proposition is an assertion. This strikes as either a rather empty claim, or an unfounded one.
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
     Full Idea: Archelaus was the first person to say that the universe is boundless.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 02.Ar.3
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]
     Full Idea: Archelaus wrote that life on Earth began in a primeval slime.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Malcolm Schofield - Archelaus
     A reaction: This sounds like a fairly clearcut assertion of the production of life by evolution. Darwin's contribution was to propose the mechanism for achieving it. We should honour the name of Archelaus for this idea.