Combining Texts

All the ideas for 'fragments/reports', 'Introduction to Mathematical Logic' and 'Briefings on Existence'

unexpand these ideas     |    start again     |     specify just one area for these texts


45 ideas

1. Philosophy / C. History of Philosophy / 5. Modern Philosophy / c. Modern philosophy mid-period
In ontology, logic dominated language, until logic was mathematized [Badiou]
     Full Idea: From Aristotle to Hegel, logic was the philosophical category of ontology's dominion over language. The mathematization of logic has authorized language to become that which seizes philosophy for itself.
     From: Alain Badiou (Briefings on Existence [1998], 8)
1. Philosophy / D. Nature of Philosophy / 8. Humour
The female body, when taken in its entirety, is the Phallus itself [Badiou]
     Full Idea: The female body, when taken in its entirety, is the Phallus itself.
     From: Alain Badiou (Briefings on Existence [1998])
     A reaction: Too good to pass over, too crazy to file sensibly, too creepy to have been filed under humour, my candidate for the weirdest remark I have ever read in a serious philosopher, but no doubt if you read Lacan etc for long enough it looks deeply wise.
1. Philosophy / E. Nature of Metaphysics / 7. Against Metaphysics
Philosophy has been relieved of physics, cosmology, politics, and now must give up ontology [Badiou]
     Full Idea: Philosophy has been released from, even relieved of, physics, cosmology, and politics, as well as many other things. It is important for it to be released from ontology per se.
     From: Alain Badiou (Briefings on Existence [1998], 3)
     A reaction: A startling proposal, for anyone who thought that ontology was First Philosophy. Badiou wants to hand ontology over to mathematicians, but I am unclear what remains for the philosophers to do.
2. Reason / A. Nature of Reason / 4. Aims of Reason
Consensus is the enemy of thought [Badiou]
     Full Idea: Consensus is the enemy of thought.
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: A nice slogan for bringing Enlightenment optimists to a halt. I am struck. Do I allow my own thinking to always be diverted towards something which might result in a consensus? Do I actually (horror!) prefer consensus to truth?
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Post proved the consistency of propositional logic in 1921 [Walicki]
     Full Idea: A proof of the consistency of propositional logic was given by Emil Post in 1921.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2.1)
Propositional language can only relate statements as the same or as different [Walicki]
     Full Idea: Propositional language is very rudimentary and has limited powers of expression. The only relation between various statements it can handle is that of identity and difference. As are all the same, but Bs can be different from As.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 7 Intro)
     A reaction: [second sentence a paraphrase] In predicate logic you could represent two statements as being the same except for one element (an object or predicate or relation or quantifier).
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Boolean connectives are interpreted as functions on the set {1,0} [Walicki]
     Full Idea: Boolean connectives are interpreted as functions on the set {1,0}.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 5.1)
     A reaction: 1 and 0 are normally taken to be true (T) and false (F). Thus the functions output various combinations of true and false, which are truth tables.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
There is 'transivity' iff membership ∈ also means inclusion ⊆ [Badiou]
     Full Idea: 'Transitivity' signifies that all of the elements of the set are also parts of the set. If you have α∈Β, you also have α⊆Β. This correlation of membership and inclusion gives a stability which is the sets' natural being.
     From: Alain Badiou (Briefings on Existence [1998], 11)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is useful for defining sets by properties, when the members are not yet known [Walicki]
     Full Idea: The empty set is mainly a mathematical convenience - defining a set by describing the properties of its members in an involved way, we may not know from the very beginning what its members are.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
The empty set avoids having to take special precautions in case members vanish [Walicki]
     Full Idea: Without the assumption of the empty set, one would often have to take special precautions for the case where a set happened to contain no elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
     A reaction: Compare the introduction of the concept 'zero', where special precautions are therefore required. ...But other special precautions are needed without zero. Either he pays us, or we pay him, or ...er. Intersecting sets need the empty set.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice must accept an indeterminate, indefinable, unconstructible set [Badiou]
     Full Idea: The axiom of choice actually amounts to admitting an absolutely indeterminate infinite set whose existence is asserted albeit remaining linguistically indefinable. On the other hand, as a process, it is unconstructible.
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: If only constructible sets are admitted (see 'V = L') then there is a contradiction.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
Ordinals play the central role in set theory, providing the model of well-ordering [Walicki]
     Full Idea: Ordinals play the central role in set theory, providing the paradigmatic well-orderings.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: When you draw the big V of the iterative hierarchy of sets (built from successive power sets), the ordinals are marked as a single line up the middle, one ordinal for each level.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Topos theory explains the plurality of possible logics [Badiou]
     Full Idea: Topos theory explains the plurality of possible logics.
     From: Alain Badiou (Briefings on Existence [1998], 14)
     A reaction: This will because logic will have a distinct theory within each 'topos'.
To determine the patterns in logic, one must identify its 'building blocks' [Walicki]
     Full Idea: In order to construct precise and valid patterns of arguments one has to determine their 'building blocks'. One has to identify the basic terms, their kinds and means of combination.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History Intro)
     A reaction: A deceptively simple and important idea. All explanation requires patterns and levels, and it is the idea of building blocks which makes such things possible. It is right at the centre of our grasp of everything.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Logic is a mathematical account of a universe of relations [Badiou]
     Full Idea: Logic should first and foremost be a mathematical thought of what a universe of relations is.
     From: Alain Badiou (Briefings on Existence [1998], 14)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' of a theory specifies interpreting a language in a domain to make all theorems true [Walicki]
     Full Idea: A specification of a domain of objects, and of the rules for interpreting the symbols of a logical language in this domain such that all the theorems of the logical theory are true is said to be a 'model' of the theory.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.1.3)
     A reaction: The basic ideas of this emerged 1915-30, but it needed Tarski's account of truth to really get it going.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The L-S Theorem says no theory (even of reals) says more than a natural number theory [Walicki]
     Full Idea: The L-S Theorem is ...a shocking result, since it implies that any consistent formal theory of everything - even about biology, physics, sets or the real numbers - can just as well be understood as being about natural numbers. It says nothing more.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2)
     A reaction: Illuminating. Particularly the point that no theory about the real numbers can say anything more than a theory about the natural numbers. So the natural numbers contain all the truths we can ever express? Eh?????
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
A compact axiomatisation makes it possible to understand a field as a whole [Walicki]
     Full Idea: Having such a compact [axiomatic] presentation of a complicated field [such as Euclid's], makes it possible to relate not only to particular theorems but also to the whole field as such.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
Axiomatic systems are purely syntactic, and do not presuppose any interpretation [Walicki]
     Full Idea: Axiomatic systems, their primitive terms and proofs, are purely syntactic, that is, do not presuppose any interpretation. ...[142] They never address the world directly, but address a possible semantic model which formally represents the world.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
There is no single unified definition of number [Badiou]
     Full Idea: Apparently - and this is quite unlike old Greek times - there is no single unified definition of number.
     From: Alain Badiou (Briefings on Existence [1998], 11)
Numbers are for measuring and for calculating (and the two must be consistent) [Badiou]
     Full Idea: Number is an instance of measuring (distinguishing the more from the less, and calibrating data), ..and a figure for calculating (one counts with numbers), ..and it ought to be a figure of consistency (the compatibility of order and calculation).
     From: Alain Badiou (Briefings on Existence [1998], 11)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Each type of number has its own characteristic procedure of introduction [Badiou]
     Full Idea: There is a heterogeneity of introductory procedures of different classical number types: axiomatic for natural numbers, structural for ordinals, algebraic for negative and rational numbers, topological for reals, mainly geometric for complex numbers.
     From: Alain Badiou (Briefings on Existence [1998], 11)
Must we accept numbers as existing when they no longer consist of units? [Badiou]
     Full Idea: Do we have to confer existence on numbers whose principle is to no longer consist of units?
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: This very nicely expresses what seems to me perhaps the most important question in the philosophy of mathematics. I am reluctant to accept such 'unitless' numbers, but I then feel hopelessly old-fashioned and naïve. What to do?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Members of ordinals are ordinals, and also subsets of ordinals [Walicki]
     Full Idea: Every member of an ordinal is itself an ordinal, and every ordinal is a transitive set (its members are also its subsets; a member of a member of an ordinal is also a member of the ordinal).
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Ordinals are the empty set, union with the singleton, and any arbitrary union of ordinals [Walicki]
     Full Idea: The collection of ordinals is defined inductively: Basis: the empty set is an ordinal; Ind: for an ordinal x, the union with its singleton is also an ordinal; and any arbitrary (possibly infinite) union of ordinals is an ordinal.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: [symbolism translated into English] Walicki says they are called 'ordinal numbers', but are in fact a set.
The union of finite ordinals is the first 'limit ordinal'; 2ω is the second... [Walicki]
     Full Idea: We can form infinite ordinals by taking unions of ordinals. We can thus form 'limit ordinals', which have no immediate predecessor. ω is the first (the union of all finite ordinals), ω + ω = sω is second, 3ω the third....
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Two infinite ordinals can represent a single infinite cardinal [Walicki]
     Full Idea: There may be several ordinals for the same cardinality. ...Two ordinals can represent different ways of well-ordering the same number (aleph-0) of elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: This only applies to infinite ordinals and cardinals. For the finite, the two coincide. In infinite arithmetic the rules are different.
Ordinals are transitive sets of transitive sets; or transitive sets totally ordered by inclusion [Walicki]
     Full Idea: An ordinal can be defined as a transitive set of transitive sets, or else, as a transitive set totally ordered by set inclusion.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The undecidability of the Continuum Hypothesis may have ruined or fragmented set theory [Badiou]
     Full Idea: As we have known since Paul Cohen's theorem, the Continuum Hypothesis is intrinsically undecidable. Many believe Cohen's discovery has driven the set-theoretic project into ruin, or 'pluralized' what was once presented as a unified construct.
     From: Alain Badiou (Briefings on Existence [1998], 6)
     A reaction: Badiou thinks the theorem completes set theory, by (roughly) finalising its map.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
In non-Euclidean geometry, all Euclidean theorems are valid that avoid the fifth postulate [Walicki]
     Full Idea: Since non-Euclidean geometry preserves all Euclid's postulates except the fifth one, all the theorems derived without the use of the fifth postulate remain valid.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Inductive proof depends on the choice of the ordering [Walicki]
     Full Idea: Inductive proof is not guaranteed to work in all cases and, particularly, it depends heavily on the choice of the ordering.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.1.1)
     A reaction: There has to be an well-founded ordering for inductive proofs to be possible.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
If mathematics is a logic of the possible, then questions of existence are not intrinsic to it [Badiou]
     Full Idea: If mathematics is a logic of the possible, then questions of existence are not intrinsic to it (as they are for the Platonist).
     From: Alain Badiou (Briefings on Existence [1998], 7)
     A reaction: See also Idea 12328. I file this to connect it with Hellman's modal (and nominalist) version of structuralism. Could it be that mathematics and modal logic are identical?
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Platonists like axioms and decisions, Aristotelians like definitions, possibilities and logic [Badiou]
     Full Idea: A Platonist's interest focuses on axioms in which the decision of thought is played out, where an Aristotelian or Leibnizian interest focuses on definitions laying out the representation of possibilities (...and the essence of mathematics is logic).
     From: Alain Badiou (Briefings on Existence [1998], 7)
     A reaction: See Idea 12323 for the significance of the Platonist approach. So logicism is an Aristotelian project? Frege is not a true platonist? I like the notion of 'the representation of possibilities', so will vote for the Aristotelians, against Badiou.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logic is definitional, but real mathematics is axiomatic [Badiou]
     Full Idea: Logic is definitional, whereas real mathematics is axiomatic.
     From: Alain Badiou (Briefings on Existence [1998], 10)
7. Existence / A. Nature of Existence / 3. Being / a. Nature of Being
There is no Being as a whole, because there is no set of all sets [Badiou]
     Full Idea: The fundamental theorem that 'there does not exist a set of all sets' designates the inexistence of Being as a whole. ...A crucial consequence of this property is that any ontological investigation is irremediably local.
     From: Alain Badiou (Briefings on Existence [1998], 14)
     A reaction: The second thought pushes Badiou into Topos Theory, where the real numbers (for example) have a separate theory in each 'topos'.
7. Existence / A. Nature of Existence / 3. Being / b. Being and existence
Existence is Being itself, but only as our thought decides it [Badiou]
     Full Idea: Existence is precisely Being itself in as much as thought decides it. And that decision orients thought essentially. ...It is when you decide upon what exists that you bind your thought to Being.
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: [2nd half p.57] Helpful for us non-Heideggerians to see what is going on. Does this mean that Being is Kant's noumenon?
7. Existence / A. Nature of Existence / 3. Being / i. Deflating being
The primitive name of Being is the empty set; in a sense, only the empty set 'is' [Badiou]
     Full Idea: In Set Theory, the primitive name of Being is the void, the empty set. The whole hierarchy takes root in it. In a certain sense, it alone 'is'.
     From: Alain Badiou (Briefings on Existence [1998], 6)
     A reaction: This is the key to Badiou's view that ontology is mathematics. David Lewis pursued interesting enquiries in this area.
The modern view of Being comes when we reject numbers as merely successions of One [Badiou]
     Full Idea: The saturation and collapse of the Euclidean idea of the being of number as One's procession signs the entry of the thought of Being into modern times.
     From: Alain Badiou (Briefings on Existence [1998], 11)
     A reaction: That is, by allowing that not all numbers are built of units, numbers expand widely enough to embrace everything we think of as Being. The landmark event is the acceptance of the infinite as a number.
7. Existence / D. Theories of Reality / 1. Ontologies
Ontology is (and always has been) Cantorian mathematics [Badiou]
     Full Idea: Enlightened by the Cantorian grounding of mathematics, we can assert ontology to be nothing other than mathematics itself. This has been the case ever since its Greek origin.
     From: Alain Badiou (Briefings on Existence [1998], 1)
     A reaction: There seems to be quite a strong feeling among mathematicians that new 'realms of being' are emerging from their researches. Only a Platonist, of course, is likely to find this idea sympathetic.
10. Modality / A. Necessity / 2. Nature of Necessity
Scotus based modality on semantic consistency, instead of on what the future could allow [Walicki]
     Full Idea: The link between time and modality was severed by Duns Scotus, who proposed a notion of possibility based purely on the notion of semantic consistency. 'Possible' means for him logically possible, that is, not involving contradiction.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History B.4)
19. Language / F. Communication / 3. Denial
We must either assert or deny any single predicate of any single subject [Badiou]
     Full Idea: There can be nothing intermediate to an assertion and a denial. We must either assert or deny any single predicate of any single subject.
     From: Alain Badiou (Briefings on Existence [1998], 1011b24)
     A reaction: The first sentence seems to be bivalence, and the second sentence excluded middle.
25. Social Practice / E. Policies / 2. Religion in Society
For Enlightenment philosophers, God was no longer involved in politics [Badiou]
     Full Idea: For the philosophers of the Enlightenment politics is strictly the affair of humankind, an immanent practice from which recourse to the All Mighty's providential organization had to be discarded.
     From: Alain Badiou (Briefings on Existence [1998], Prol)
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
     Full Idea: Archelaus was the first person to say that the universe is boundless.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 02.Ar.3
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]
     Full Idea: Archelaus wrote that life on Earth began in a primeval slime.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Malcolm Schofield - Archelaus
     A reaction: This sounds like a fairly clearcut assertion of the production of life by evolution. Darwin's contribution was to propose the mechanism for achieving it. We should honour the name of Archelaus for this idea.
29. Religion / D. Religious Issues / 1. Religious Commitment / a. Religious Belief
The God of religion results from an encounter, not from a proof [Badiou]
     Full Idea: The God of metaphysics makes sense of existing according to a proof, while the God of religion makes sense of living according to an encounter
     From: Alain Badiou (Briefings on Existence [1998], Prol)