Combining Texts

All the ideas for 'fragments/reports', 'What Numbers Could Not Be' and 'The Tarskian Turn'

unexpand these ideas     |    start again     |     specify just one area for these texts


72 ideas

1. Philosophy / D. Nature of Philosophy / 3. Philosophy Defined
Philosophy is the most general intellectual discipline [Horsten]
     Full Idea: Philosophy is the most general intellectual discipline.
     From: Leon Horsten (The Tarskian Turn [2011], 05.1)
     A reaction: Very simple, but exactly how I see the subject. It is continuous with the sciences, and tries to give an account of nature, but operating at an extreme level of generality. It must respect the findings of science, but offer bold interpretations.
2. Reason / D. Definition / 2. Aims of Definition
A definition should allow the defined term to be eliminated [Horsten]
     Full Idea: A definition allows a defined term to be eliminated in every context in which it appears.
     From: Leon Horsten (The Tarskian Turn [2011], 04.2)
     A reaction: To do that, a definition had better be incredibly comprehensive, so that no nice nuance of the original term is thrown out.
3. Truth / A. Truth Problems / 1. Truth
Semantic theories of truth seek models; axiomatic (syntactic) theories seek logical principles [Horsten]
     Full Idea: There are semantical theories of truth, concerned with models for languages containing the truth predicate, and axiomatic (or syntactic) theories, interested in basic logical principles governing the concept of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 01.1)
     A reaction: This is the map of contemporary debates, which seem now to have given up talking about 'correspondence', 'coherence' etc.
Truth is a property, because the truth predicate has an extension [Horsten]
     Full Idea: I take truth to be a property because the truth predicate has an extension - the collection of all true sentences - and this collection does not (unlike the 'extension' of 'exists') consist of everything, or even of all sentences.
     From: Leon Horsten (The Tarskian Turn [2011], 01.1)
     A reaction: He concedes that it may be an 'uninteresting' property. My problem is always that I am unconvinced that truth is tied to sentences. I can make perfect sense of animal thoughts being right or wrong. Extension of mental propositions?
3. Truth / A. Truth Problems / 2. Defining Truth
Truth has no 'nature', but we should try to describe its behaviour in inferences [Horsten]
     Full Idea: We should not aim at describing the nature of truth because there is no such thing. Rather, we should aim at describing the inferential behaviour of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 10.2.3)
3. Truth / A. Truth Problems / 5. Truth Bearers
Propositions have sentence-like structures, so it matters little which bears the truth [Horsten]
     Full Idea: It makes little difference, at least in extensional contexts, whether the truth bearers are propositions or sentences (or assertions). Even if the bearers are propositions rather than sentences, propositions are structured rather like sentences.
     From: Leon Horsten (The Tarskian Turn [2011], 02.4)
     A reaction: The 'extensional' context means you are only talking about the things that are referred to, and not about the way this is expressed. I prefer propositions, but this is an interesting point.
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
Modern correspondence is said to be with the facts, not with true propositions [Horsten]
     Full Idea: Modern correspondence theorists no longer take things to correspond to true propositions; they consider facts to be the truthmakers of propositions.
     From: Leon Horsten (The Tarskian Turn [2011], 02.1)
     A reaction: If we then define facts as the way certain things are, independently from our thinking about it, at least we seem to be avoiding circularity. Not much point in correspondence accounts if you are not a robust realist (like me). [14,000th idea, 23/4/12!]
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
The correspondence 'theory' is too vague - about both 'correspondence' and 'facts' [Horsten]
     Full Idea: The principle difficulty of the correspondence theory of truth is its vagueness. It is too vague to be called a theory until more information is given about what is meant by the terms 'correspondence' and 'fact'. Facts can involve a heavy ontology.
     From: Leon Horsten (The Tarskian Turn [2011], 02.1)
     A reaction: I see nothing here to make me give up my commitment to the correspondence view of truth, though it sounds as if I will have to give up the word 'theory' in that context. Truth is so obviously about thought fitting reality that there is nothing to discuss.
3. Truth / D. Coherence Truth / 2. Coherence Truth Critique
The coherence theory allows multiple coherent wholes, which could contradict one another [Horsten]
     Full Idea: The coherence theory seems too liberal. It seems there can be more than one systematic whole which, while being internally coherent, contradict each other, and thus cannot all be true. Coherence is a necessary but not sufficient condition for truth.
     From: Leon Horsten (The Tarskian Turn [2011], 02.1)
     A reaction: This is a modern post-Tarski axiomatic truth theorist making very short work indeed of the coherence theory of truth. I take Horsten to be correct.
3. Truth / E. Pragmatic Truth / 1. Pragmatic Truth
The pragmatic theory of truth is relative; useful for group A can be useless for group B [Horsten]
     Full Idea: The pragmatic theory is unsatisfactory because usefulness is a relative notion. One theory can be useful to group A while being thoroughly impractical for group B. This would make the theory both truth and false.
     From: Leon Horsten (The Tarskian Turn [2011], 02.1)
     A reaction: This objection, along with the obvious fact that certain falsehoods can be very useful, would seem to rule pragmatism out as a theory of truth. It is, in fact, an abandonment of truth.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Tarski's hierarchy lacks uniform truth, and depends on contingent factors [Horsten]
     Full Idea: According to the Tarskian hierarchical conception, truth is not a uniform notion. ...Also Kripke has emphasised that the level of a token of the truth predicate can depend on contingent factors, such as what else has been said by a speaker.
     From: Leon Horsten (The Tarskian Turn [2011], 04.5)
Tarski Bi-conditional: if you'll assert φ you'll assert φ-is-true - and also vice versa [Horsten]
     Full Idea: The axiom schema 'Sentence "phi;" is true iff φ' is the (unrestricted) Tarski-Biconditional, and is motivated by the thought that if you are willing to assume or outright assert that φ, you will assert that φ is true - and also vice versa.
     From: Leon Horsten (The Tarskian Turn [2011], 02.2)
     A reaction: Very helpful! Most people are just bewildered by the Tarski bi-conditional ('"Snow is white"...), but this formulation nicely shows its minimal character while showing that it really does say something. It says what truths and truth-claims commit you to.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
Semantic theories have a regress problem in describing truth in the languages for the models [Horsten]
     Full Idea: Semantic theories give a class of models with a truth predicate, ...but Tarski taught us that this needs a more encompassing framework than its language...so how is the semantics of the framework expressed? The model route has a regress.
     From: Leon Horsten (The Tarskian Turn [2011], 02.3)
     A reaction: [compressed] So this regress problem, of endless theories of truth going up the hierarchy, is Horsten's main reason for opting for axiomatic theories, which he then tries to strengthen, so that they are not quite so deflated.
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Axiomatic approaches avoid limiting definitions to avoid the truth predicate, and limited sizes of models [Horsten]
     Full Idea: An adequate definition of truth can only be given for the fragment of our language that does not contain the truth predicate. A model can never encompass the whole of the domain of discourse of our language. The axiomatic approach avoids these problems.
     From: Leon Horsten (The Tarskian Turn [2011], 10.1)
Axiomatic approaches to truth avoid the regress problem of semantic theories [Horsten]
     Full Idea: The axiomatic approach to truth does not suffer from the regress problem.
     From: Leon Horsten (The Tarskian Turn [2011], 02.3)
     A reaction: See Idea 15345 for the regress problem. The difficulty then seems to be that axiomatic approaches lack expressive power, so the hunt is on for a set of axioms which will do a decent job. Fun work, if you can cope with it.
An axiomatic theory needs to be of maximal strength, while being natural and sound [Horsten]
     Full Idea: The challenge is to find the arithmetically strongest axiomatical truth theory that is both natural and truth-theoretically sound.
     From: Leon Horsten (The Tarskian Turn [2011], 07.7)
'Reflexive' truth theories allow iterations (it is T that it is T that p) [Horsten]
     Full Idea: A theory of truth is 'reflexive' if it allows us to prove truth-iterations ("It is true that it is true that so-and-so").
     From: Leon Horsten (The Tarskian Turn [2011], 01.4)
A good theory of truth must be compositional (as well as deriving biconditionals) [Horsten]
     Full Idea: Deriving many Tarski-biconditionals is not a sufficient condition for being a good theory of truth. A good theory of truth must in addition do justice to the compositional nature of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 06.1)
The Naďve Theory takes the bi-conditionals as axioms, but it is inconsistent, and allows the Liar [Horsten]
     Full Idea: The Naďve Theory of Truth collects all the Tarski bi-conditionals of a language and takes them as axioms. But no consistent theory extending Peano arithmetic can prove all of them. It is inconsistent, and even formalises the liar paradox.
     From: Leon Horsten (The Tarskian Turn [2011], 03.5.2)
     A reaction: [compressed] This looks to me like the account of truth that Davidson was working with, since he just seemed to be compiling bi-conditionals for tricky cases. (Wrong! He championed the Compositional Theory, Horsten p.71)
Axiomatic theories take truth as primitive, and propose some laws of truth as axioms [Horsten]
     Full Idea: In the axiomatic approach we take the truth predicate to express an irreducible, primitive notion. The meaning of the truth predicate is partially explicated by proposing certain laws of truth as basic principles, as axioms.
     From: Leon Horsten (The Tarskian Turn [2011], 04.2)
     A reaction: Judging by Horsten's book, this is a rather fruitful line of enquiry, but it still seems like a bit of a defeat to take truth as 'primitive'. Presumably you could add some vague notion of correspondence as the background picture.
By adding truth to Peano Arithmetic we increase its power, so truth has mathematical content! [Horsten]
     Full Idea: It is surprising that just by adding to Peano Arithmetic principles concerning the notion of truth, we increase the mathematical strength of PA. So, contrary to expectations, the 'philosophical' notion of truth has real mathematical content.
     From: Leon Horsten (The Tarskian Turn [2011], 06.4)
     A reaction: Horsten invites us to be really boggled by this. All of this is in the Compositional Theory TC. It enables a proof of the consistency of arithmetic (but still won't escape Gödel's Second).
3. Truth / G. Axiomatic Truth / 2. FS Truth Axioms
Friedman-Sheard theory keeps classical logic and aims for maximum strength [Horsten]
     Full Idea: The Friedman-Sheard theory of truth holds onto classical logic and tries to construct a theory that is as strong as possible.
     From: Leon Horsten (The Tarskian Turn [2011], 01.4)
3. Truth / G. Axiomatic Truth / 3. KF Truth Axioms
Kripke-Feferman has truth gaps, instead of classical logic, and aims for maximum strength [Horsten]
     Full Idea: If we abandon classical logic in favour of truth-value gaps and try to strengthen the theory, this leads to the Kripke-Feferman theory of truth, and variants of it.
     From: Leon Horsten (The Tarskian Turn [2011], 01.4)
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Inferential deflationism says truth has no essence because no unrestricted logic governs the concept [Horsten]
     Full Idea: According to 'inferential deflationism', truth is a concept without a nature or an essence. This is betrayed by the fact that there are no unrestricted logical laws that govern the concept of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 01.1)
Deflationism skips definitions and models, and offers just accounts of basic laws of truth [Horsten]
     Full Idea: Contemporary deflationism about truth does not attempt to define truth, and does not rely on models containing the truth predicate. Instead they are interpretations of axiomatic theories of truth, containing only basic laws of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 02.3)
Deflationism concerns the nature and role of truth, but not its laws [Horsten]
     Full Idea: Deflationism is not a theory of the laws of truth. It is a view on the nature and role of the concept of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 05 Intro)
This deflationary account says truth has a role in generality, and in inference [Horsten]
     Full Idea: On the conception of deflationism developed in this book, the prime positive role of the truth predicate is to serve as a device for expressing generalities, and an inferential tool.
     From: Leon Horsten (The Tarskian Turn [2011], 07.5)
Deflationism says truth isn't a topic on its own - it just concerns what is true [Horsten]
     Full Idea: Deflationism says the theory of truth does not have a substantial domain of its own. The domain of the theory of truth consists of the bearers of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 05.1)
     A reaction: The immediate thought is that truth also concerns falsehoods, which would be inexplicable without it. If physics just concerns the physical, does that mean that physics lacks its own 'domain'? Generalising about the truths is a topic.
Deflation: instead of asserting a sentence, we can treat it as an object with the truth-property [Horsten]
     Full Idea: The Deflationary view just says that instead of asserting a sentence, we can turn the sentence into an object and assert that this object has the property of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 05.2.2)
     A reaction: That seems to leave a big question hanging, which concerns the nature of the property that is being attributed to this object. Quine 1970:10-13 says it is just a 'device'. Surely you can rest content with that as an account of truth?
4. Formal Logic / E. Nonclassical Logics / 1. Nonclassical Logics
Nonclassical may accept T/F but deny applicability, or it may deny just T or F as well [Horsten]
     Full Idea: Some nonclassical logic stays close to classical, assuming two mutually exclusive truth values T and F, but some sentences fail to have one. Others have further truth values such as 'half truth', or dialethists allow some T and F at the same time.
     From: Leon Horsten (The Tarskian Turn [2011], 01.2)
     A reaction: I take that to say that the first lot accept bivalence but reject excluded middle (allowing 'truth value gaps'), while the second lot reject both. Bivalence gives the values available, and excluded middle says what has them.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Doubt is thrown on classical logic by the way it so easily produces the liar paradox [Horsten]
     Full Idea: Aside from logic, so little is needed to generate the liar paradox that one wonders whether the laws of classical logic are unrestrictedly valid after all. (Many theories of truth have therefore been formulated in nonclassical logic.)
     From: Leon Horsten (The Tarskian Turn [2011], 01.2)
     A reaction: Kripke uses Strong Kleene logic for his theory. The implication is that debates discussed by Horsten actually have the status of classical logic at stake, as well as the nature of truth.
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
Deduction Theorem: ψ only derivable from φ iff φ→ψ are axioms [Horsten]
     Full Idea: The Deduction Theorem says ψ is derivable in classical predicate logic from ψ iff the sentence φ→ψ is a theorem of classical logic. Hence inferring φ to ψ is truth-preserving iff the axiom scheme φ→ψ is provable.
     From: Leon Horsten (The Tarskian Turn [2011], 02.2)
     A reaction: Horsten offers this to show that the Tarski bi-conditionals can themselves be justified, and not just the rule of inference involved. Apparently you can only derive something if you first announce that you have the ability to derive it. Odd.
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A theory is 'non-conservative' if it facilitates new mathematical proofs [Horsten]
     Full Idea: A theory is 'non-conservative' if it allows us to prove mathematical facts that go beyond what the background mathematical theory can prove on its own.
     From: Leon Horsten (The Tarskian Turn [2011], 01.4)
     A reaction: This is an instance of the relationship with mathematics being used as the test case for explorations of logic. It is a standard research method, because it is so precise, but should not be mistaken for the last word about a theory.
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
It is easier to imagine truth-value gaps (for the Liar, say) than for truth-value gluts (both T and F) [Horsten]
     Full Idea: It is easier to imagine what it is like for a sentence to lack a truth value than what it is like for a sentence to be both truth and false. So I am grudgingly willing to entertain the possibility that certain sentences (like the Liar) lack a truth value.
     From: Leon Horsten (The Tarskian Turn [2011], 02.5)
     A reaction: Fans of truth value gluts are dialethists like Graham Priest. I'm with Horsten on this one. But in what way can a sentence be meaningful if it lacks a truth-value? He mentions unfulfilled presuppositions and indicative conditionals as gappy.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Satisfaction is a primitive notion, and very liable to semantical paradoxes [Horsten]
     Full Idea: Satisfaction is a more primitive notion than truth, and it is even more susceptible to semantical paradoxes than the truth predicate.
     From: Leon Horsten (The Tarskian Turn [2011], 06.3)
     A reaction: The Liar is the best known paradox here. Tarski bases his account of truth on this primitive notion, so Horsten is pointing out the difficulties.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
The first incompleteness theorem means that consistency does not entail soundness [Horsten]
     Full Idea: It is a lesson of the first incompleteness theorem that consistency does not entail soundness. If we add the negation of the gödel sentence for PA as an extra axiom to PA, the result is consistent. This negation is false, so the theory is unsound.
     From: Leon Horsten (The Tarskian Turn [2011], 04.3)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
Strengthened Liar: 'this sentence is not true in any context' - in no context can this be evaluated [Horsten]
     Full Idea: The Strengthened Liar sentence says 'this sentence is not true in any context'. It is not hard to figure out that there is no context in which the sentence can be coherently evaluated.
     From: Leon Horsten (The Tarskian Turn [2011], 04.6)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
There are no such things as numbers [Benacerraf]
     Full Idea: There are no such things as numbers.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: Mill said precisely the same (Idea 9794). I think I agree. There has been a classic error of reification. An abstract pattern is not an object. If I coin a word for all the three-digit numbers in our system, I haven't created a new 'object'.
Numbers can't be sets if there is no agreement on which sets they are [Benacerraf]
     Full Idea: The fact that Zermelo and Von Neumann disagree on which particular sets the numbers are is fatal to the view that each number is some particular set.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: I agree. A brilliantly simple argument. There is the possibility that one of the two accounts is correct (I would vote for Zermelo), but it is not actually possible to prove it.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Benacerraf says numbers are defined by their natural ordering [Benacerraf, by Fine,K]
     Full Idea: Benacerraf thinks of numbers as being defined by their natural ordering.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by Kit Fine - Cantorian Abstraction: Recon. and Defence §5
     A reaction: My intuition is that cardinality is logically prior to ordinality, since that connects better with the experienced physical world of objects. Just as the fact that people have different heights must precede them being arranged in height order.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
To understand finite cardinals, it is necessary and sufficient to understand progressions [Benacerraf, by Wright,C]
     Full Idea: Benacerraf claims that the concept of a progression is in some way the fundamental arithmetical notion, essential to understanding the idea of a finite cardinal, with a grasp of progressions sufficing for grasping finite cardinals.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by Crispin Wright - Frege's Concept of Numbers as Objects 3.xv
     A reaction: He cites Dedekind (and hence the Peano Axioms) as the source of this. The interest is that progression seems to be fundamental to ordianls, but this claims it is also fundamental to cardinals. Note that in the first instance they are finite.
A set has k members if it one-one corresponds with the numbers less than or equal to k [Benacerraf]
     Full Idea: Any set has k members if and only if it can be put into one-to-one correspondence with the set of numbers less than or equal to k.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: This is 'Ernie's' view of things in the paper. This defines the finite cardinal numbers in terms of the finite ordinal numbers. He has already said that the set of numbers is well-ordered.
To explain numbers you must also explain cardinality, the counting of things [Benacerraf]
     Full Idea: I would disagree with Quine. The explanation of cardinality - i.e. of the use of numbers for 'transitive counting', as I have called it - is part and parcel of the explication of number.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I n2)
     A reaction: Quine says numbers are just a progression, with transitive counting as a bonus. Interesting that Benacerraf identifies cardinality with transitive counting. I would have thought it was the possession of numerical quantity, not ascertaining it.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
English expressions are denumerably infinite, but reals are nondenumerable, so many are unnameable [Horsten]
     Full Idea: The number of English expressions is denumerably infinite. But Cantor's theorem can be used to show that there are nondenumerably many real numbers. So not every real number has a (simple or complex name in English).
     From: Leon Horsten (The Tarskian Turn [2011], 06.3)
     A reaction: This really bothers me. Are we supposed to be committed to the existence of entities which are beyond our powers of naming? How precise must naming be? If I say 'pick a random real number', might that potentially name all of them?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
We can count intransitively (reciting numbers) without understanding transitive counting of items [Benacerraf]
     Full Idea: Learning number words in the right order is counting 'intransitively'; using them as measures of sets is counting 'transitively'. ..It seems possible for someone to learn the former without learning the latter.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: Scruton's nice question (Idea 3907) is whether you could be said to understand numbers if you could only count intransitively. I would have thought such a state contained no understanding at all of numbers. Benacerraf agrees.
Someone can recite numbers but not know how to count things; but not vice versa [Benacerraf]
     Full Idea: It seems that it is possible for someone to learn to count intransitively without learning to count transitively. But not vice versa.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: Benacerraf favours the priority of the ordinals. It is doubtful whether you have grasped cardinality properly if you don't know how to count things. Could I understand 'he has 27 sheep', without understanding the system of natural numbers?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The application of a system of numbers is counting and measurement [Benacerraf]
     Full Idea: The application of a system of numbers is counting and measurement.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: A simple point, but it needs spelling out. Counting seems prior, in experience if not in logic. Measuring is a luxury you find you can indulge in (by imagining your quantity) split into parts, once you have mastered counting.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
For Zermelo 3 belongs to 17, but for Von Neumann it does not [Benacerraf]
     Full Idea: Ernie's number progression is [φ],[φ,[φ]],[φ,[φ],[φ,[φ,[φ]]],..., whereas Johnny's is [φ],[[φ]],[[[φ]]],... For Ernie 3 belongs to 17, not for Johnny. For Ernie 17 has 17 members; for Johnny it has one.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: Benacerraf's point is that there is no proof-theoretic way to choose between them, though I am willing to offer my intuition that Ernie (Zermelo) gives the right account. Seventeen pebbles 'contains' three pebbles; you must pass 3 to count to 17.
The successor of x is either x and all its members, or just the unit set of x [Benacerraf]
     Full Idea: For Ernie, the successor of a number x was the set consisting of x and all the members of x, while for Johnny the successor of x was simply [x], the unit set of x - the set whose only member is x.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: See also Idea 9900. Benacerraf's famous point is that it doesn't seem to make any difference to arithmetic which version of set theory you choose as its basis. I take this to conclusively refute the idea that numbers ARE sets.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
ZFC showed that the concept of set is mathematical, not logical, because of its existence claims [Horsten]
     Full Idea: One of the strengths of ZFC is that it shows that the concept of set is a mathematical concept. Many originally took it to be a logical concept. But ZFC makes mind-boggling existence claims, which should not follow if it was a logical concept.
     From: Leon Horsten (The Tarskian Turn [2011], 05.2.3)
     A reaction: This suggests that set theory is not just a way of expressing mathematics (see Benacerraf 1965), but that some aspect of mathematics has been revealed by it - maybe even its essential nature.
Set theory is substantial over first-order arithmetic, because it enables new proofs [Horsten]
     Full Idea: The nonconservativeness of set theory over first-order arithmetic has done much to establish set theory as a substantial theory indeed.
     From: Leon Horsten (The Tarskian Turn [2011], 07.5)
     A reaction: Horsten goes on to point out the price paid, which is the whole new ontology which has to be added to the arithmetic. Who cares? It's all fictions anyway!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Disputes about mathematical objects seem irrelevant, and mathematicians cannot resolve them [Benacerraf, by Friend]
     Full Idea: If two children were brought up knowing two different set theories, they could entirely agree on how to do arithmetic, up to the point where they discuss ontology. There is no mathematical way to tell which is the true representation of numbers.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by Michčle Friend - Introducing the Philosophy of Mathematics
     A reaction: Benacerraf ends by proposing a structuralist approach. If mathematics is consistent with conflicting set theories, then those theories are not shedding light on mathematics.
No particular pair of sets can tell us what 'two' is, just by one-to-one correlation [Benacerraf, by Lowe]
     Full Idea: Hume's Principle can't tell us what a cardinal number is (this is one lesson of Benacerraf's well-known problem). An infinity of pairs of sets could actually be the number two (not just the simplest sets).
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by E.J. Lowe - The Possibility of Metaphysics 10.3
     A reaction: The drift here is for numbers to end up as being basic, axiomatic, indefinable, universal entities. Since I favour patterns as the basis of numbers, I think the basis might be in a pre-verbal experience, which even a bird might have, viewing its eggs.
If ordinal numbers are 'reducible to' some set-theory, then which is which? [Benacerraf]
     Full Idea: If a particular set-theory is in a strong sense 'reducible to' the theory of ordinal numbers... then we can still ask, but which is really which?
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIB)
     A reaction: A nice question about all reductions. If we reduce mind to brain, does that mean that brain is really just mind. To have a direction (up/down?), reduction must lead to explanation in a single direction only. Do numbers explain sets?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
If any recursive sequence will explain ordinals, then it seems to be the structure which matters [Benacerraf]
     Full Idea: If any recursive sequence whatever would do to explain ordinal numbers suggests that what is important is not the individuality of each element, but the structure which they jointly exhibit.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: This sentence launched the whole modern theory of Structuralism in mathematics. It is hard to see what properties a number-as-object could have which would entail its place in an ordinal sequence.
The job is done by the whole system of numbers, so numbers are not objects [Benacerraf]
     Full Idea: 'Objects' do not do the job of numbers singly; the whole system performs the job or nothing does. I therefore argue that numbers could not be objects at all.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: This thought is explored by structuralism - though it is a moot point where mere 'nodes' in a system (perhaps filled with old bits of furniture) will do the job either. No one ever explains the 'power' of numbers (felt when you do a sudoku). Causal?
The number 3 defines the role of being third in a progression [Benacerraf]
     Full Idea: Any object can play the role of 3; that is, any object can be the third element in some progression. What is peculiar to 3 is that it defines that role, not by being a paradigm, but by representing the relation of any third member of a progression.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: An interesting early attempt to spell out the structuralist idea. I'm thinking that the role is spelled out by the intersection of patterns which involve threes.
Number words no more have referents than do the parts of a ruler [Benacerraf]
     Full Idea: Questions of the identification of the referents of number words should be dismissed as misguided in just the way that a question about the referents of the parts of a ruler would be seen as misguided.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: What a very nice simple point. It would be very strange to insist that every single part of the continuum of a ruler should be regarded as an 'object'.
Mathematical objects only have properties relating them to other 'elements' of the same structure [Benacerraf]
     Full Idea: Mathematical objects have no properties other than those relating them to other 'elements' of the same structure.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], p.285), quoted by Fraser MacBride - Structuralism Reconsidered §3 n13
     A reaction: Suppose we only had one number - 13 - and we all cried with joy when we recognised it in a group of objects. Would that be a number, or just a pattern, or something hovering between the two?
How can numbers be objects if order is their only property? [Benacerraf, by Putnam]
     Full Idea: Benacerraf raises the question how numbers can be 'objects' if they have no properties except order in a particular ω-sequence.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965], p.301) by Hilary Putnam - Mathematics without Foundations
     A reaction: Frege certainly didn't think that order was their only property (see his 'borehole' metaphor in Grundlagen). It might be better to say that they are objects which only have relational properties.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Number-as-objects works wholesale, but fails utterly object by object [Benacerraf]
     Full Idea: The identification of numbers with objects works wholesale but fails utterly object by object.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: This seems to be a glaring problem for platonists. You can stare at 1728 till you are blue in the face, but it only begins to have any properties at all once you examine its place in the system. This is unusual behaviour for an object.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are not predicates, as they function very differently from adjectives [Benacerraf]
     Full Idea: The unpredicative nature of number words can be seen by noting how different they are from, say, ordinary adjectives, which do function as predicates.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: He points out that 'x is seventeen' is a rare construction in English, unlike 'x is happy/green/interesting', and that numbers outrank all other adjectives (having to appear first in any string of them).
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
The set-theory paradoxes mean that 17 can't be the class of all classes with 17 members [Benacerraf]
     Full Idea: In no consistent theory is there a class of all classes with seventeen members. The existence of the paradoxes is a good reason to deny to 'seventeen' this univocal role of designating the class of all classes with seventeen members.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: This was Frege's disaster, and seems to block any attempt to achieve logicism by translating numbers into sets. It now seems unclear whether set theory is logic, or mathematics, or sui generis.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Predicativism says mathematical definitions must not include the thing being defined [Horsten]
     Full Idea: Predicativism has it that a mathematical object (such as a set of numbers) cannot be defined by quantifying over a collection that includes that same mathematical object. To do so would be a violation of the vicious circle principle.
     From: Leon Horsten (The Tarskian Turn [2011], 07.7)
     A reaction: In other words, when you define an object you are obliged to predicate something new, and not just recycle the stuff you already have.
7. Existence / D. Theories of Reality / 8. Facts / b. Types of fact
We may believe in atomic facts, but surely not complex disjunctive ones? [Horsten]
     Full Idea: While positive and perhaps even negative atomic facts may be unproblematic, it seems excessive to commit oneself to the existence of logically complex facts such as disjunctive facts.
     From: Leon Horsten (The Tarskian Turn [2011], 02.1)
     A reaction: Presumably it is hard to deny that very complex statements involving massive disjunctions can be true or false. But why does commitment to real facts have to involve a huge ontology? The ontology is just the ingredients of the fact, isn't it?
7. Existence / D. Theories of Reality / 10. Vagueness / f. Supervaluation for vagueness
In the supervaluationist account, disjunctions are not determined by their disjuncts [Horsten]
     Full Idea: If 'Britain is large' and 'Italy is large' lack truth values, then so must 'Britain or Italy is large' - so on the supervaluationist account the truth value of a disjunction is not determined by the truth values of its disjuncts.
     From: Leon Horsten (The Tarskian Turn [2011], 06.2)
     A reaction: Compare Idea 15362 to get the full picture here.
If 'Italy is large' lacks truth, so must 'Italy is not large'; but classical logic says it's large or it isn't [Horsten]
     Full Idea: If 'Italy is a large country' lacks a truth value, then so too, presumably, does 'Italy is not a large country'. But 'Italy is or is not a large country' is true, on the supervaluationist account, because it is a truth of classical propositional logic.
     From: Leon Horsten (The Tarskian Turn [2011], 06.2)
     A reaction: See also Idea 15363. He cites Fine 1975.
9. Objects / F. Identity among Objects / 6. Identity between Objects
Identity statements make sense only if there are possible individuating conditions [Benacerraf]
     Full Idea: Identity statements make sense only in contexts where there exist possible individuating conditions.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], III)
     A reaction: He is objecting to bizarre identifications involving numbers. An identity statement may be bizarre even if we can clearly individuate the two candidates. Winston Churchill is a Mars Bar. Identifying George Orwell with Eric Blair doesn't need a 'respect'.
11. Knowledge Aims / A. Knowledge / 4. Belief / c. Aim of beliefs
Some claim that indicative conditionals are believed by people, even though they are not actually held true [Horsten]
     Full Idea: In the debate about doxastic attitudes towards indicative conditional sentences, one finds philosophers who claim that conditionals can be believed even though they have no truth value (and thus are not true).
     From: Leon Horsten (The Tarskian Turn [2011], 09.3)
19. Language / C. Assigning Meanings / 1. Syntax
A theory of syntax can be based on Peano arithmetic, thanks to the translation by Gödel coding [Horsten]
     Full Idea: A notion of formal provability can be articulated in Peano arithmetic. ..This is surprisingly 'linguistic' rather than mathematical, but the key is in the Gödel coding. ..Hence we use Peano arithmetic as a theory of syntax.
     From: Leon Horsten (The Tarskian Turn [2011], 02.4)
     A reaction: This is the explanation of why issues in formal semantics end up being studied in systems based on formal arithmetic. And I had thought it was just because they were geeks who dream in numbers, and can't speak language properly...
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
     Full Idea: Archelaus was the first person to say that the universe is boundless.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 02.Ar.3
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]
     Full Idea: Archelaus wrote that life on Earth began in a primeval slime.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Malcolm Schofield - Archelaus
     A reaction: This sounds like a fairly clearcut assertion of the production of life by evolution. Darwin's contribution was to propose the mechanism for achieving it. We should honour the name of Archelaus for this idea.