Combining Texts

All the ideas for 'fragments/reports', 'Foundations without Foundationalism' and 'Logic for Philosophy'

unexpand these ideas     |    start again     |     specify just one area for these texts


97 ideas

3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Satisfaction is 'truth in a model', which is a model of 'truth' [Shapiro]
     Full Idea: In a sense, satisfaction is the notion of 'truth in a model', and (as Hodes 1984 elegantly puts it) 'truth in a model' is a model of 'truth'.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.1)
     A reaction: So we can say that Tarski doesn't offer a definition of truth itself, but replaces it with a 'model' of truth.
4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Aristotelian logic is complete [Shapiro]
     Full Idea: Aristotelian logic is complete.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.5)
     A reaction: [He cites Corcoran 1972]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
'Theorems' are formulas provable from no premises at all [Sider]
     Full Idea: Formulas provable from no premises at all are often called 'theorems'.
     From: Theodore Sider (Logic for Philosophy [2010], 2.6)
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth tables assume truth functionality, and are just pictures of truth functions [Sider]
     Full Idea: The method of truth tables assumes truth functionality. Truth tables are just pictures of truth functions.
     From: Theodore Sider (Logic for Philosophy [2010], 6.3)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
Intuitively, deontic accessibility seems not to be reflexive, but to be serial [Sider]
     Full Idea: Deontic accessibility seems not to be reflexive (that it ought to be true doesn't make it true). One could argue that it is serial (that there is always a world where something is acceptable).
     From: Theodore Sider (Logic for Philosophy [2010], 6.3.1)
In D we add that 'what is necessary is possible'; then tautologies are possible, and contradictions not necessary [Sider]
     Full Idea: In D we add to K a new axiom saying that 'what's necessary is possible' (□φ→◊φ), ..and it can then be proved that tautologies are possible and contradictions are not necessary.
     From: Theodore Sider (Logic for Philosophy [2010], 6.4.2)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
System B introduces iterated modalities [Sider]
     Full Idea: With system B we begin to be able to say something about iterated modalities. ..S4 then takes a different stand on the iterated modalities, and neither is an extension of the other.
     From: Theodore Sider (Logic for Philosophy [2010], 6.4.4)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
S5 is the strongest system, since it has the most valid formulas, because it is easy to be S5-valid [Sider]
     Full Idea: S5 is the strongest system, since it has the most valid formulas. That's because it has the fewest models; it's easy to be S5-valid since there are so few potentially falsifying models. K is the weakest system, for opposite reasons.
     From: Theodore Sider (Logic for Philosophy [2010], 6.3.2)
     A reaction: Interestingly, the orthodox view is that S5 is the correct logic for metaphysics, but it sounds a bit lax. Compare Idea 13707.
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
Epistemic accessibility is reflexive, and allows positive and negative introspection (KK and K¬K) [Sider]
     Full Idea: Epistemic accessibility should be required to be reflexive (allowing Kφ→φ). S4 allows the 'KK principle', or 'positive introspection' (Kφ→KKφ), and S5 allows 'negative introspection' (¬Kφ→K¬Kφ).
     From: Theodore Sider (Logic for Philosophy [2010], 7.2)
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
We can treat modal worlds as different times [Sider]
     Full Idea: We can think of the worlds of modal logic as being times, rather than 'possible' worlds.
     From: Theodore Sider (Logic for Philosophy [2010], 7.3.3)
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
Converse Barcan Formula: □∀αφ→∀α□φ [Sider]
     Full Idea: The Converse Barcan Formula reads □∀αφ→∀α□φ (or an equivalent using ◊).
     From: Theodore Sider (Logic for Philosophy [2010], 9.5.2)
     A reaction: I would read that as 'if all the αs happen to be φ, then αs have to be φ'. Put like that, I would have thought that it was obviously false. Sider points out that some new object could turn up which isn't φ.
The Barcan Formula ∀x□Fx→□∀xFx may be a defect in modal logic [Sider]
     Full Idea: The Barcan Formula ∀x□Fx→□∀xFx is often regarded as a defect of Simple Quantified Modal Logic, though this most clearly seen in its equivalent form ◊∃xFx→∃x◊Fx.
     From: Theodore Sider (Logic for Philosophy [2010], 9.5.2)
     A reaction: [See Idea 13719 for an explanation why it might be a defect] I translate the first one as 'if xs must be F, then they are always F', and the second one as 'for x to be possibly F, there must exist an x which is possibly F'. Modality needs existence.
System B is needed to prove the Barcan Formula [Sider]
     Full Idea: The proof of the Barcan Formula require System B.
     From: Theodore Sider (Logic for Philosophy [2010], 9.7)
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
You can employ intuitionist logic without intuitionism about mathematics [Sider]
     Full Idea: Not everyone who employs intuitionistic logic is an intuitionist about mathematics.
     From: Theodore Sider (Logic for Philosophy [2010], 7.4.1)
     A reaction: This seems worthy of note, since it may be tempting to reject the logic because of the implausibility of the philosophy of mathematics. I must take intuitionist logic more seriously.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A set is 'transitive' if contains every member of each of its members [Shapiro]
     Full Idea: If, for every b∈d, a∈b entails that a∈d, the d is said to be 'transitive'. In other words, d is transitive if it contains every member of each of its members.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.2)
     A reaction: The alternative would be that the members of the set are subsets, but the members of those subsets are not themselves members of the higher-level set.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice is essential for proving downward Löwenheim-Skolem [Shapiro]
     Full Idea: The axiom of choice is essential for proving the downward Löwenheim-Skolem Theorem.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
Are sets part of logic, or part of mathematics? [Shapiro]
     Full Idea: Is there a notion of set in the jurisdiction of logic, or does it belong to mathematics proper?
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: It immediately strikes me that they might be neither. I don't see that relations between well-defined groups of things must involve number, and I don't see that mapping the relations must intrinsically involve logical consequence or inference.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
Russell's paradox shows that there are classes which are not iterative sets [Shapiro]
     Full Idea: The argument behind Russell's paradox shows that in set theory there are logical sets (i.e. classes) that are not iterative sets.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.3)
     A reaction: In his preface, Shapiro expresses doubts about the idea of a 'logical set'. Hence the theorists like the iterative hierarchy because it is well-founded and under control, not because it is comprehensive in scope. See all of pp.19-20.
It is central to the iterative conception that membership is well-founded, with no infinite descending chains [Shapiro]
     Full Idea: In set theory it is central to the iterative conception that the membership relation is well-founded, ...which means there are no infinite descending chains from any relation.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5.1.4)
Iterative sets are not Boolean; the complement of an iterative set is not an iterative sets [Shapiro]
     Full Idea: Iterative sets do not exhibit a Boolean structure, because the complement of an iterative set is not itself an iterative set.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.1)
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
'Well-ordering' of a set is an irreflexive, transitive, and binary relation with a least element [Shapiro]
     Full Idea: A 'well-ordering' of a set X is an irreflexive, transitive, and binary relation on X in which every non-empty subset of X has a least element.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5.1.3)
     A reaction: So there is a beginning, an ongoing sequence, and no retracing of steps.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
There is no 'correct' logic for natural languages [Shapiro]
     Full Idea: There is no question of finding the 'correct' or 'true' logic underlying a part of natural language.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: One needs the context of Shapiro's defence of second-order logic to see his reasons for this. Call me romantic, but I retain faith that there is one true logic. The Kennedy Assassination problem - can't see the truth because drowning in evidence.
Logic is the ideal for learning new propositions on the basis of others [Shapiro]
     Full Idea: A logic can be seen as the ideal of what may be called 'relative justification', the process of coming to know some propositions on the basis of others.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.3.1)
     A reaction: This seems to be the modern idea of logic, as opposed to identification of a set of 'logical truths' from which eternal necessities (such as mathematics) can be derived. 'Know' implies that they are true - which conclusions may not be.
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Can one develop set theory first, then derive numbers, or are numbers more basic? [Shapiro]
     Full Idea: In 1910 Weyl observed that set theory seemed to presuppose natural numbers, and he regarded numbers as more fundamental than sets, as did Fraenkel. Dedekind had developed set theory independently, and used it to formulate numbers.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.2.2)
Skolem and Gödel championed first-order, and Zermelo, Hilbert, and Bernays championed higher-order [Shapiro]
     Full Idea: Skolem and Gödel were the main proponents of first-order languages. The higher-order language 'opposition' was championed by Zermelo, Hilbert, and Bernays.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.2)
Bernays (1918) formulated and proved the completeness of propositional logic [Shapiro]
     Full Idea: Bernays (1918) formulated and proved the completeness of propositional logic, the first precise solution as part of the Hilbert programme.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.2.1)
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
The 'triumph' of first-order logic may be related to logicism and the Hilbert programme, which failed [Shapiro]
     Full Idea: The 'triumph' of first-order logic may be related to the remnants of failed foundationalist programmes early this century - logicism and the Hilbert programme.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: Being complete must also be one of its attractions, and Quine seems to like it because of its minimal ontological commitment.
Maybe compactness, semantic effectiveness, and the Löwenheim-Skolem properties are desirable [Shapiro]
     Full Idea: Tharp (1975) suggested that compactness, semantic effectiveness, and the Löwenheim-Skolem properties are consequences of features one would want a logic to have.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
     A reaction: I like this proposal, though Shapiro is strongly against. We keep extending our logic so that we can prove new things, but why should we assume that we can prove everything? That's just what Gödel suggests that we should give up on.
First-order logic was an afterthought in the development of modern logic [Shapiro]
     Full Idea: Almost all the systems developed in the first part of the twentieth century are higher-order; first-order logic was an afterthought.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.1)
The notion of finitude is actually built into first-order languages [Shapiro]
     Full Idea: The notion of finitude is explicitly 'built in' to the systems of first-order languages in one way or another.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1)
     A reaction: Personally I am inclined to think that they are none the worse for that. No one had even thought of all these lovely infinities before 1870, and now we are supposed to change our logic (our actual logic!) to accommodate them. Cf quantum logic.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Henkin semantics has separate variables ranging over the relations and over the functions [Shapiro]
     Full Idea: In 'Henkin' semantics, in a given model the relation variables range over a fixed collection of relations D on the domain, and the function variables range over a collection of functions F on the domain.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 3.3)
Second-order logic is better than set theory, since it only adds relations and operations, and nothing else [Shapiro, by Lavine]
     Full Idea: Shapiro preferred second-order logic to set theory because second-order logic refers only to the relations and operations in a domain, and not to the other things that set-theory brings with it - other domains, higher-order relations, and so forth.
     From: report of Stewart Shapiro (Foundations without Foundationalism [1991]) by Shaughan Lavine - Understanding the Infinite VII.4
In standard semantics for second-order logic, a single domain fixes the ranges for the variables [Shapiro]
     Full Idea: In the standard semantics of second-order logic, by fixing a domain one thereby fixes the range of both the first-order variables and the second-order variables. There is no further 'interpreting' to be done.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 3.3)
     A reaction: This contrasts with 'Henkin' semantics (Idea 13650), or first-order semantics, which involve more than one domain of quantification.
Completeness, Compactness and Löwenheim-Skolem fail in second-order standard semantics [Shapiro]
     Full Idea: The counterparts of Completeness, Compactness and the Löwenheim-Skolem theorems all fail for second-order languages with standard semantics, but hold for Henkin or first-order semantics. Hence such logics are much like first-order logic.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
     A reaction: Shapiro votes for the standard semantics, because he wants the greater expressive power, especially for the characterization of infinite structures.
Broad standard semantics, or Henkin semantics with a subclass, or many-sorted first-order semantics? [Shapiro]
     Full Idea: Three systems of semantics for second-order languages: 'standard semantics' (variables cover all relations and functions), 'Henkin semantics' (relations and functions are a subclass) and 'first-order semantics' (many-sorted domains for variable-types).
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: [my summary]
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
The most popular account of logical consequence is the semantic or model-theoretic one [Sider]
     Full Idea: On the question of the nature of genuine logical consequence, ...the most popular answer is the semantic, or model-theoretic one.
     From: Theodore Sider (Logic for Philosophy [2010], 1.5)
     A reaction: Reading the literature, one might be tempted to think that this is the only account that anyone takes seriously. Substitutional semantics seems an interesting alternative.
Maybe logical consequence is impossibility of the premises being true and the consequent false [Sider]
     Full Idea: The 'modal' account of logical consequence is that it is not possible for the premises to be true and the consequent false (under some suitable notion of possibility).
     From: Theodore Sider (Logic for Philosophy [2010], 1.5)
     A reaction: Sider gives a nice summary of five views of logical consequence, to which Shapiro adds substitutional semantics.
Maybe logical consequence is a primitive notion [Sider]
     Full Idea: There is a 'primitivist' account, according to which logical consequence is a primitive notion.
     From: Theodore Sider (Logic for Philosophy [2010], 1.5)
     A reaction: While sympathetic to substitutional views (Idea 13674), the suggestion here pushes me towards thinking that truth must be at the root of it. The trouble, though, is that a falsehood can be a good logical consequence of other falsehoods.
Maybe logical consequence is more a matter of provability than of truth-preservation [Sider]
     Full Idea: Another answer to the question about the nature of logical consequence is a proof-theoretic one, according to which it is more a matter of provability than of truth-preservation.
     From: Theodore Sider (Logic for Philosophy [2010], 1.5)
     A reaction: I don't like this, and prefer the model-theoretic or substitutional accounts. Whether you can prove that something is a logical consequence seems to me entirely separate from whether you can see that it is so. Gödel seems to agree.
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
A 'theorem' is an axiom, or the last line of a legitimate proof [Sider]
     Full Idea: A 'theorem' is defined as the last line of a proof in which each line is either an axiom or follows from earlier lines by a rule.
     From: Theodore Sider (Logic for Philosophy [2010], 9.7)
     A reaction: In other words, theorems are the axioms and their implications.
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
If a logic is incomplete, its semantic consequence relation is not effective [Shapiro]
     Full Idea: Second-order logic is inherently incomplete, so its semantic consequence relation is not effective.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.2.1)
Semantic consequence is ineffective in second-order logic [Shapiro]
     Full Idea: It follows from Gödel's incompleteness theorem that the semantic consequence relation of second-order logic is not effective. For example, the set of logical truths of any second-order logic is not recursively enumerable. It is not even arithmetic.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: I don't fully understand this, but it sounds rather major, and a good reason to avoid second-order logic (despite Shapiro's proselytising). See Peter Smith on 'effectively enumerable'.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Finding the logical form of a sentence is difficult, and there are no criteria of correctness [Shapiro]
     Full Idea: It is sometimes difficult to find a formula that is a suitable counterpart of a particular sentence of natural language, and there is no acclaimed criterion for what counts as a good, or even acceptable, 'translation'.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.1)
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
When a variable is 'free' of the quantifier, the result seems incapable of truth or falsity [Sider]
     Full Idea: When a variable is not combined with a quantifier (and so is 'free'), the result is, intuitively, semantically incomplete, and incapable of truth or falsity.
     From: Theodore Sider (Logic for Philosophy [2010], 4.2)
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'total' function must always produce an output for a given domain [Sider]
     Full Idea: Calling a function a 'total' function 'over D' means that the function must have a well-defined output (which is a member of D) whenever it is given as inputs any n members of D.
     From: Theodore Sider (Logic for Philosophy [2010], 5.2)
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
λ can treat 'is cold and hungry' as a single predicate [Sider]
     Full Idea: We might prefer λx(Fx∧Gx)(a) as the symbolization of 'John is cold and hungry', since it treats 'is cold and hungry' as a single predicate.
     From: Theodore Sider (Logic for Philosophy [2010], 5.5)
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
We might reduce ontology by using truth of sentences and terms, instead of using objects satisfying models [Shapiro]
     Full Idea: The main role of substitutional semantics is to reduce ontology. As an alternative to model-theoretic semantics for formal languages, the idea is to replace the 'satisfaction' relation of formulas (by objects) with the 'truth' of sentences (using terms).
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1.4)
     A reaction: I find this very appealing, and Ruth Barcan Marcus is the person to look at. My intuition is that logic should have no ontology at all, as it is just about how inference works, not about how things are. Shapiro offers a compromise.
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Good axioms should be indisputable logical truths [Sider]
     Full Idea: Since they are the foundations on which a proof rests, the axioms in a good axiomatic system ought to represent indisputable logical truths.
     From: Theodore Sider (Logic for Philosophy [2010], 2.6)
No assumptions in axiomatic proofs, so no conditional proof or reductio [Sider]
     Full Idea: Axiomatic systems do not allow reasoning with assumptions, and therefore do not allow conditional proof or reductio ad absurdum.
     From: Theodore Sider (Logic for Philosophy [2010], 2.6)
     A reaction: Since these are two of the most basic techniques of proof which I have learned (in Lemmon), I shall avoid axiomatic proof systems at all costs, despites their foundational and Ockhamist appeal.
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
Induction has a 'base case', then an 'inductive hypothesis', and then the 'inductive step' [Sider]
     Full Idea: A proof by induction starts with a 'base case', usually that an atomic formula has some property. It then assumes an 'inductive hypothesis', that the property is true up to a certain case. The 'inductive step' then says it will be true for the next case.
     From: Theodore Sider (Logic for Philosophy [2010], 2.7)
     A reaction: [compressed]
Proof by induction 'on the length of the formula' deconstructs a formula into its accepted atoms [Sider]
     Full Idea: The style of proof called 'induction on formula construction' (or 'on the number of connectives', or 'on the length of the formula') rest on the fact that all formulas are built up from atomic formulas according to strict rules.
     From: Theodore Sider (Logic for Philosophy [2010], 2.7)
     A reaction: Hence the proof deconstructs the formula, and takes it back to a set of atomic formulas have already been established.
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Natural deduction helpfully allows reasoning with assumptions [Sider]
     Full Idea: The method of natural deduction is popular in introductory textbooks since it allows reasoning with assumptions.
     From: Theodore Sider (Logic for Philosophy [2010], 2.5)
     A reaction: Reasoning with assumptions is generally easier, rather than being narrowly confined to a few tricky axioms, You gradually show that an inference holds whatever the assumption was, and so end up with the same result.
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
We can build proofs just from conclusions, rather than from plain formulae [Sider]
     Full Idea: We can construct proofs not out of well-formed formulae ('wffs'), but out of sequents, which are some premises followed by their logical consequence. We explicitly keep track of the assumptions upon which the conclusion depends.
     From: Theodore Sider (Logic for Philosophy [2010], 2.5.1)
     A reaction: He says the method of sequents was invented by Gerhard Gentzen (the great nazi logician) in 1935. The typical starting sequents are the introduction and elimination rules. E.J. Lemmon's book, used in this database, is an example.
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Valuations in PC assign truth values to formulas relative to variable assignments [Sider]
     Full Idea: A valuation function in predicate logic will assign truth values to formulas relative to variable assignments.
     From: Theodore Sider (Logic for Philosophy [2010], 4.2)
     A reaction: Sider observes that this is a 'double' relativisation (due to Tarski), since propositional logic truth was already relative to an interpretation. Now we are relative to variable assignments as well.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
The semantical notion of a logical truth is validity, being true in all interpretations [Sider]
     Full Idea: The semantical notion of a logical truth is that of a valid formula, which is true in all interpretations. In propositional logic they are 'tautologies'.
     From: Theodore Sider (Logic for Philosophy [2010], 2.3)
     A reaction: This implies that there is a proof-theoretic account of logical truth as well. Intuitively a logical truth is a sequent which holds no matter which subject matter it refers to, so the semantic view sounds OK.
It is hard to say which are the logical truths in modal logic, especially for iterated modal operators [Sider]
     Full Idea: It isn't clear which formulas of modal propositional logic are logical truths, ...especially for sentences that contain iterations of modal operators. Is □P→□□P a logical truth? It's hard to say.
     From: Theodore Sider (Logic for Philosophy [2010], 6.3)
     A reaction: The result, of course, is that there are numerous 'systems' for modal logic, so that you can choose the one that gives you the logical truths you want. His example is valid in S4 and S5, but not in the others.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
'Satisfaction' is a function from models, assignments, and formulas to {true,false} [Shapiro]
     Full Idea: The 'satisfaction' relation may be thought of as a function from models, assignments, and formulas to the truth values {true,false}.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.1)
     A reaction: This at least makes clear that satisfaction is not the same as truth. Now you have to understand how Tarski can define truth in terms of satisfaction.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Semantics for models uses set-theory [Shapiro]
     Full Idea: Typically, model-theoretic semantics is formulated in set theory.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.5.1)
In model theory, first define truth, then validity as truth in all models, and consequence as truth-preservation [Sider]
     Full Idea: In model theory one normally defines some notion of truth in a model, and then uses it to define validity as truth in all models, and semantic consequence as the preservation of truth in models.
     From: Theodore Sider (Logic for Philosophy [2010], 10.1)
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An axiomatization is 'categorical' if its models are isomorphic, so there is really only one interpretation [Shapiro]
     Full Idea: An axiomatization is 'categorical' if all its models are isomorphic to one another; ..hence it has 'essentially only one' interpretation [Veblen 1904].
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.2.1)
Categoricity can't be reached in a first-order language [Shapiro]
     Full Idea: Categoricity cannot be attained in a first-order language.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.3)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The Löwenheim-Skolem theorems show an explosion of infinite models, so 1st-order is useless for infinity [Shapiro]
     Full Idea: The Löwenheim-Skolem theorems mean that no first-order theory with an infinite model is categorical. If Γ has an infinite model, then it has a model of every infinite cardinality. So first-order languages cannot characterize infinite structures.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
     A reaction: So much of the debate about different logics hinges on characterizing 'infinite structures' - whatever they are! Shapiro is a leading structuralist in mathematics, so he wants second-order logic to help with his project.
Downward Löwenheim-Skolem: each satisfiable countable set always has countable models [Shapiro]
     Full Idea: A language has the Downward Löwenheim-Skolem property if each satisfiable countable set of sentences has a model whose domain is at most countable.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
     A reaction: This means you can't employ an infinite model to represent a fact about a countable set.
Upward Löwenheim-Skolem: each infinite model has infinite models of all sizes [Shapiro]
     Full Idea: A language has the Upward Löwenheim-Skolem property if for each set of sentences whose model has an infinite domain, then it has a model at least as big as each infinite cardinal.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
     A reaction: This means you can't have a countable model to represent a fact about infinite sets.
Substitutional semantics only has countably many terms, so Upward Löwenheim-Skolem trivially fails [Shapiro]
     Full Idea: The Upward Löwenheim-Skolem theorem fails (trivially) with substitutional semantics. If there are only countably many terms of the language, then there are no uncountable substitution models.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1.4)
     A reaction: Better and better. See Idea 13674. Why postulate more objects than you can possibly name? I'm even suspicious of all real numbers, because you can't properly define them in finite terms. Shapiro objects that the uncountable can't be characterized.
5. Theory of Logic / K. Features of Logics / 3. Soundness
'Weakly sound' if every theorem is a logical truth; 'sound' if every deduction is a semantic consequence [Shapiro]
     Full Idea: A logic is 'weakly sound' if every theorem is a logical truth, and 'strongly sound', or simply 'sound', if every deduction from Γ is a semantic consequence of Γ. Soundness indicates that the deductive system is faithful to the semantics.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.1)
     A reaction: Similarly, 'weakly complete' is when every logical truth is a theorem.
5. Theory of Logic / K. Features of Logics / 4. Completeness
We can live well without completeness in logic [Shapiro]
     Full Idea: We can live without completeness in logic, and live well.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: This is the kind of heady suggestion that American philosophers love to make. Sounds OK to me, though. Our ability to draw good inferences should be expected to outrun our ability to actually prove them. Completeness is for wimps.
In a complete logic you can avoid axiomatic proofs, by using models to show consequences [Sider]
     Full Idea: You can establish facts of the form Γ|-φ while avoiding the agonies of axiomatic proofs by reasoning directly about models to conclusions about semantic consequence, and then citing completeness.
     From: Theodore Sider (Logic for Philosophy [2010], 4.5)
     A reaction: You cite completeness by saying that anything which you have shown to be a semantic consequence must therefore be provable (in some way).
5. Theory of Logic / K. Features of Logics / 6. Compactness
Non-compactness is a strength of second-order logic, enabling characterisation of infinite structures [Shapiro]
     Full Idea: It is sometimes said that non-compactness is a defect of second-order logic, but it is a consequence of a crucial strength - its ability to give categorical characterisations of infinite structures.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: The dispute between fans of first- and second-order may hinge on their attitude to the infinite. I note that Skolem, who was not keen on the infinite, stuck to first-order. Should we launch a new Skolemite Crusade?
Compactness is derived from soundness and completeness [Shapiro]
     Full Idea: Compactness is a corollary of soundness and completeness. If Γ is not satisfiable, then, by completeness, Γ is not consistent. But the deductions contain only finite premises. So a finite subset shows the inconsistency.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
     A reaction: [this is abbreviated, but a proof of compactness] Since all worthwhile logics are sound, this effectively means that completeness entails compactness.
Compactness surprisingly says that no contradictions can emerge when the set goes infinite [Sider]
     Full Idea: Compactness is intuitively surprising, ..because one might have thought there could be some contradiction latent within some infinite set, preventing it from being satisfiable, only discovered when you consider the whole set. But this can't happen.
     From: Theodore Sider (Logic for Philosophy [2010], 4.5)
5. Theory of Logic / K. Features of Logics / 9. Expressibility
A language is 'semantically effective' if its logical truths are recursively enumerable [Shapiro]
     Full Idea: A logical language is 'semantically effective' if the collection of logically true sentences is a recursively enumerable set of strings.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Complex numbers can be defined as reals, which are defined as rationals, then integers, then naturals [Shapiro]
     Full Idea: 'Definitions' of integers as pairs of naturals, rationals as pairs of integers, reals as Cauchy sequences of rationals, and complex numbers as pairs of reals are reductive foundations of various fields.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.1)
     A reaction: On p.30 (bottom) Shapiro objects that in the process of reduction the numbers acquire properties they didn't have before.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Only higher-order languages can specify that 0,1,2,... are all the natural numbers that there are [Shapiro]
     Full Idea: The main problem of characterizing the natural numbers is to state, somehow, that 0,1,2,.... are all the numbers that there are. We have seen that this can be accomplished with a higher-order language, but not in a first-order language.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1.4)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Natural numbers are the finite ordinals, and integers are equivalence classes of pairs of finite ordinals [Shapiro]
     Full Idea: By convention, the natural numbers are the finite ordinals, the integers are certain equivalence classes of pairs of finite ordinals, etc.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The 'continuum' is the cardinality of the powerset of a denumerably infinite set [Shapiro]
     Full Idea: The 'continuum' is the cardinality of the powerset of a denumerably infinite set.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5.1.2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
First-order arithmetic can't even represent basic number theory [Shapiro]
     Full Idea: Few theorists consider first-order arithmetic to be an adequate representation of even basic number theory.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5 n28)
     A reaction: This will be because of Idea 13656. Even 'basic' number theory will include all sorts of vast infinities, and that seems to be where the trouble is.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
A single second-order sentence validates all of arithmetic - but this can't be proved axiomatically [Sider]
     Full Idea: A single second-order sentence has second-order semantic consequences which are all and only the truths of arithmetic, but this is cold comfort because of incompleteness; no axiomatic system draws out the consequences of this axiom.
     From: Theodore Sider (Logic for Philosophy [2010], 5.4.3)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Some sets of natural numbers are definable in set-theory but not in arithmetic [Shapiro]
     Full Idea: There are sets of natural numbers definable in set-theory but not in arithmetic.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5.3.3)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Logicism is distinctive in seeking a universal language, and denying that logic is a series of abstractions [Shapiro]
     Full Idea: It is claimed that aiming at a universal language for all contexts, and the thesis that logic does not involve a process of abstraction, separates the logicists from algebraists and mathematicians, and also from modern model theory.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.1)
     A reaction: I am intuitively drawn to the idea that logic is essentially the result of a series of abstractions, so this gives me a further reason not to be a logicist. Shapiro cites Goldfarb 1979 and van Heijenoort 1967. Logicists reduce abstraction to logic.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics and logic have no border, and logic must involve mathematics and its ontology [Shapiro]
     Full Idea: I extend Quinean holism to logic itself; there is no sharp border between mathematics and logic, especially the logic of mathematics. One cannot expect to do logic without incorporating some mathematics and accepting at least some of its ontology.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: I have strong sales resistance to this proposal. Mathematics may have hijacked logic and warped it for its own evil purposes, but if logic is just the study of inferences then it must be more general than to apply specifically to mathematics.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Some reject formal properties if they are not defined, or defined impredicatively [Shapiro]
     Full Idea: Some authors (Poincaré and Russell, for example) were disposed to reject properties that are not definable, or are definable only impredicatively.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.1)
     A reaction: I take Quine to be the culmination of this line of thought, with his general rejection of 'attributes' in logic and in metaphysics.
7. Existence / D. Theories of Reality / 10. Vagueness / f. Supervaluation for vagueness
A 'precisification' of a trivalent interpretation reduces it to a bivalent interpretation [Sider]
     Full Idea: For a 'precisification' we take a trivalent interpretation and preserve the T and F values, and then assign all the third values in some way to either T or F.
     From: Theodore Sider (Logic for Philosophy [2010], 3.4.5)
     A reaction: [my informal summary of Sider's formal definition]
A 'supervaluation' assigns further Ts and Fs, if they have been assigned in every precisification [Sider]
     Full Idea: In a 'supervaluation' we take a trivalent interpretation, and assign to each wff T (or F) if it is T (or F) in every precisification, leaving the third truth-value in any other cases. The wffs are then 'supertrue' or 'superfalse' in the interpretation.
     From: Theodore Sider (Logic for Philosophy [2010], 3.4.5)
     A reaction: [my non-symbolic summary] Sider says the Ts and Fs in the precisifications are assigned 'in any way you like', so supervaluation is a purely formal idea, not a technique for eliminating vagueness.
Supervaluational logic is classical, except when it adds the 'Definitely' operator [Sider]
     Full Idea: Supervaluation preserves classical logic (even though supervaluations are three-valued), except when we add the Δ operator (meaning 'definitely' or 'determinately').
     From: Theodore Sider (Logic for Philosophy [2010], 3.4.5)
We can 'sharpen' vague terms, and then define truth as true-on-all-sharpenings [Sider]
     Full Idea: We can introduce 'sharpenings', to make vague terms precise without disturbing their semantics. Then truth (or falsity) becomes true(false)-in-all-sharpenings. You are only 'rich' if you are rich-on-all-sharpenings of the word.
     From: Theodore Sider (Logic for Philosophy [2010], 3.4.5)
     A reaction: Not very helpful. Lots of people might be considered rich in many contexts, but very few people would be considered rich in all contexts. You are still left with some vague middle ground.
8. Modes of Existence / A. Relations / 1. Nature of Relations
A relation is a feature of multiple objects taken together [Sider]
     Full Idea: A relation is just a feature of multiple objects taken together.
     From: Theodore Sider (Logic for Philosophy [2010], 1.8)
     A reaction: Appealingly simple, especially for a logician, who can then just list the relevant objects as members of a set, and the job is done. But if everyone to the left of me is also taller than me, this won't quite do.
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Properties are often seen as intensional; equiangular and equilateral are different, despite identity of objects [Shapiro]
     Full Idea: Properties are often taken to be intensional; equiangular and equilateral are thought to be different properties of triangles, even though any triangle is equilateral if and only if it is equiangular.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.3)
     A reaction: Many logicians seem to want to treat properties as sets of objects (red being just the set of red things), but this looks like a desperate desire to say everything in first-order logic, where only objects are available to quantify over.
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The identity of indiscernibles is necessarily true, if being a member of some set counts as a property [Sider]
     Full Idea: The identity of indiscernibles (∀x∀y(∀X(Xx↔Xy)→x=y) is necessarily true, provided that we construe 'property' very broadly, so that 'being a member of such-and-such set' counts as a property.
     From: Theodore Sider (Logic for Philosophy [2010], 5.4.3)
     A reaction: Sider's example is that if the two objects are the same they must both have the property of being a member of the same singleton set, which they couldn't have if they were different.
10. Modality / A. Necessity / 3. Types of Necessity
'Strong' necessity in all possible worlds; 'weak' necessity in the worlds where the relevant objects exist [Sider]
     Full Idea: 'Strong necessity' requires the truth of 'necessarily φ' is all possible worlds. 'Weak necessity' merely requires that 'necessarily φ' be true in all worlds in which objects referred to within φ exist.
     From: Theodore Sider (Logic for Philosophy [2010], 9.6.3)
     A reaction: This seems to be a highly desirably distinction, given the problem of Idea 13719. It is weakly necessary that humans can't fly unaided, assuming we are referring the current feeble wingless species. That hardly seems to be strongly necessary.
10. Modality / A. Necessity / 5. Metaphysical Necessity
Maybe metaphysical accessibility is intransitive, if a world in which I am a frog is impossible [Sider]
     Full Idea: Some argue that metaphysical accessibility is intransitive. The individuals involved mustn't be too different from the actual world. A world in which I am a frog isn't metaphysically possible. Perhaps the logic is modal system B or T.
     From: Theodore Sider (Logic for Philosophy [2010], 6.3.1)
     A reaction: This sounds rather plausible and attractive to me. We don't want to say that I am necessarily the way I actually am, though, so we need criteria. Essence!
10. Modality / A. Necessity / 6. Logical Necessity
Logical truths must be necessary if anything is [Sider]
     Full Idea: On any sense of necessity, surely logical truths must be necessary.
     From: Theodore Sider (Logic for Philosophy [2010], 6.4)
10. Modality / B. Possibility / 8. Conditionals / b. Types of conditional
'If B hadn't shot L someone else would have' if false; 'If B didn't shoot L, someone else did' is true [Sider]
     Full Idea: To show the semantic difference between counterfactuals and indicative conditionals, 'If Booth hadn't shot Lincoln someone else would have' is false, but 'If Booth didn't shoot Lincoln then someone else did' is true.
     From: Theodore Sider (Logic for Philosophy [2010], 8)
     A reaction: He notes that indicative conditionals also differ in semantics from material and strict conditionals. The first example allows a world where Lincoln was not shot, but the second assumes our own world, where he was. Contextual domains?
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Transworld identity is not a problem in de dicto sentences, which needn't identify an individual [Sider]
     Full Idea: There is no problem of transworld identification with de dicto modal sentence, for their evaluation does not require taking an individual from one possible world and reidentifying it in another.
     From: Theodore Sider (Logic for Philosophy [2010], 9.2)
     A reaction: If 'de dicto' is about the sentence and 'de re' is about the object (Idea 5732), how do you evaluate the sentence without at least some notion of the object to which it refers. Nec the Prime Minister chairs the cabinet. Could a poached egg do the job?
10. Modality / E. Possible worlds / 3. Transworld Objects / e. Possible Objects
Barcan Formula problem: there might have been a ghost, despite nothing existing which could be a ghost [Sider]
     Full Idea: A problem with the Barcan Formula is it might be possible for there to exist a ghost, even though there in fact exists nothing that could be a ghost. There could have existed some 'extra' thing which could be a ghost.
     From: Theodore Sider (Logic for Philosophy [2010], 9.5.2)
     A reaction: Thus when we make modal claims, do they only refer to what actually exists, or is specified in our initial domain? Can a claim enlarge the domain? Are domains 'variable'? Simple claims about what might have existed seem to be a problem.
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
     Full Idea: Archelaus was the first person to say that the universe is boundless.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 02.Ar.3
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]
     Full Idea: Archelaus wrote that life on Earth began in a primeval slime.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Malcolm Schofield - Archelaus
     A reaction: This sounds like a fairly clearcut assertion of the production of life by evolution. Darwin's contribution was to propose the mechanism for achieving it. We should honour the name of Archelaus for this idea.