Combining Texts

All the ideas for 'works', '01: Book of Genesis' and 'Philosophies of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


69 ideas

1. Philosophy / A. Wisdom / 1. Nature of Wisdom
There is practical wisdom (for action), and theoretical wisdom (for deep understanding) [Aristotle, by Whitcomb]
     Full Idea: Aristotle takes wisdom to come in two forms, the practical and the theoretical, the former of which is good judgement about how to act, and the latter of which is deep knowledge or understanding.
     From: report of Aristotle (works [c.330 BCE]) by Dennis Whitcomb - Wisdom Intro
     A reaction: The interesting question is then whether the two are connected. One might be thoroughly 'sensible' about action, without counting as 'wise', which seems to require a broader view of what is being done. Whitcomb endorses Aristotle on this idea.
2. Reason / A. Nature of Reason / 2. Logos
For Aristotle logos is essentially the ability to talk rationally about questions of value [Roochnik on Aristotle]
     Full Idea: For Aristotle logos is the ability to speak rationally about, with the hope of attaining knowledge, questions of value.
     From: comment on Aristotle (works [c.330 BCE]) by David Roochnik - The Tragedy of Reason p.26
2. Reason / A. Nature of Reason / 4. Aims of Reason
Aristotle is the supreme optimist about the ability of logos to explain nature [Roochnik on Aristotle]
     Full Idea: Aristotle is the great theoretician who articulates a vision of a world in which natural and stable structures can be rationally discovered. His is the most optimistic and richest view of the possibilities of logos
     From: comment on Aristotle (works [c.330 BCE]) by David Roochnik - The Tragedy of Reason p.95
2. Reason / D. Definition / 4. Real Definition
Aristotelian definitions aim to give the essential properties of the thing defined [Aristotle, by Quine]
     Full Idea: A real definition, according to the Aristotelian tradition, gives the essence of the kind of thing defined. Man is defined as a rational animal, and thus rationality and animality are of the essence of each of us.
     From: report of Aristotle (works [c.330 BCE]) by Willard Quine - Vagaries of Definition p.51
     A reaction: Compare Idea 4385. Personally I prefer the Aristotelian approach, but we may have to say 'We cannot identify the essence of x, and so x cannot be defined'. Compare 'his mood was hard to define' with 'his mood was hostile'.
2. Reason / D. Definition / 5. Genus and Differentia
Aristotelian definition involves first stating the genus, then the differentia of the thing [Aristotle, by Urmson]
     Full Idea: For Aristotle, to give a definition one must first state the genus and then the differentia of the kind of thing to be defined.
     From: report of Aristotle (works [c.330 BCE]) by J.O. Urmson - Aristotle's Doctrine of the Mean p.157
     A reaction: Presumably a modern definition would just be a list of properties, but Aristotle seeks the substance. How does he define a genus? - by placing it in a further genus?
2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions replace a complete sentence containing the expression [George/Velleman]
     Full Idea: A contextual definition shows how to analyse an expression in situ, by replacing a complete sentence (of a particular form) in which the expression occurs by another in which it does not.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.2)
     A reaction: This is a controversial procedure, which (according to Dummett) Frege originally accepted, and later rejected. It might not be the perfect definition that replacing just the expression would give you, but it is a promising step.
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions quantify over the thing being defined [George/Velleman]
     Full Idea: When a definition contains a quantifier whose range includes the very entity being defined, the definition is said to be 'impredicative'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.2)
     A reaction: Presumably they are 'impredicative' because they do not predicate a new quality in the definiens, but make use of the qualities already known.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'power set' of A is all the subsets of A [George/Velleman]
     Full Idea: The 'power set' of A is all the subsets of A. P(A) = {B : B ⊆ A}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman]
     Full Idea: The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}}. The existence of this set is guaranteed by three applications of the Axiom of Pairing.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: See Idea 10100 for the Axiom of Pairing.
Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman]
     Full Idea: The 'Cartesian Product' of any two sets A and B is the set of all ordered pairs <a, b> in which a ∈ A and b ∈ B, and it is denoted as A x B.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
Grouping by property is common in mathematics, usually using equivalence [George/Velleman]
     Full Idea: The idea of grouping together objects that share some property is a common one in mathematics, ...and the technique most often involves the use of equivalence relations.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
'Equivalence' is a reflexive, symmetric and transitive relation; 'same first letter' partitions English words [George/Velleman]
     Full Idea: A relation is an equivalence relation if it is reflexive, symmetric and transitive. The 'same first letter' is an equivalence relation on the set of English words. Any relation that puts a partition into clusters will be equivalence - and vice versa.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This is a key concept in the Fregean strategy for defining numbers.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman]
     Full Idea: ZFC is a theory concerned only with sets. Even the elements of all of the sets studied in ZFC are also sets (whose elements are also sets, and so on). This rests on one clearly pure set, the empty set Φ. ..Mathematics only needs pure sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This makes ZFC a much more metaphysically comfortable way to think about sets, because it can be viewed entirely formally. It is rather hard to disentangle a chair from the singleton set of that chair.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Axiom of Extensionality: for all sets x and y, if x and y have the same elements then x = y [George/Velleman]
     Full Idea: The Axiom of Extensionality says that for all sets x and y, if x and y have the same elements then x = y.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This seems fine in pure set theory, but hits the problem of renates and cordates in the real world. The elements coincide, but the axiom can't tell you why they coincide.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Axiom of Pairing: for all sets x and y, there is a set z containing just x and y [George/Velleman]
     Full Idea: The Axiom of Pairing says that for all sets x and y, there is a set z containing x and y, and nothing else. In symbols: ∀x∀y∃z∀w(w ∈ z ↔ (w = x ∨ w = y)).
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: See Idea 10099 for an application of this axiom.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
The Axiom of Reducibility made impredicative definitions possible [George/Velleman]
     Full Idea: The Axiom of Reducibility ...had the effect of making impredicative definitions possible.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
ZFC can prove that there is no set corresponding to the concept 'set' [George/Velleman]
     Full Idea: Sets, unlike extensions, fail to correspond to all concepts. We can prove in ZFC that there is no set corresponding to the concept 'set' - that is, there is no set of all sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
     A reaction: This is rather an important point for Frege. However, all concepts have extensions, but they may be proper classes, rather than precisely defined sets.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
As a reduction of arithmetic, set theory is not fully general, and so not logical [George/Velleman]
     Full Idea: The problem with reducing arithmetic to ZFC is not that this theory is inconsistent (as far as we know it is not), but rather that is not completely general, and for this reason not logical. For example, it asserts the existence of sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
     A reaction: Note that ZFC has not been proved consistent.
4. Formal Logic / G. Formal Mereology / 1. Mereology
Aristotle relativises the notion of wholeness to different measures [Aristotle, by Koslicki]
     Full Idea: Aristotle proposes to relativise unity and plurality, so that a single object can be both one (indivisible) and many (divisible) simultaneously, without contradiction, relative to different measures. Wholeness has degrees, with the strength of the unity.
     From: report of Aristotle (works [c.330 BCE]) by Kathrin Koslicki - The Structure of Objects 7.2.12
     A reaction: [see Koslicki's account of Aristotle for details] As always, the Aristotelian approach looks by far the most promising. Simplistic mechanical accounts of how parts make wholes aren't going to work. We must include the conventional and conceptual bit.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Asserting Excluded Middle is a hallmark of realism about the natural world [George/Velleman]
     Full Idea: A hallmark of our realist stance towards the natural world is that we are prepared to assert the Law of Excluded Middle for all statements about it. For all statements S, either S is true, or not-S is true.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
     A reaction: Personally I firmly subscribe to realism, so I suppose I must subscribe to Excluded Middle. ...Provided the statement is properly formulated. Or does liking excluded middle lead me to realism?
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
For Aristotle, the subject-predicate structure of Greek reflected a substance-accident structure of reality [Aristotle, by O'Grady]
     Full Idea: Aristotle apparently believed that the subject-predicate structure of Greek reflected the substance-accident nature of reality.
     From: report of Aristotle (works [c.330 BCE]) by Paul O'Grady - Relativism Ch.4
     A reaction: We need not assume that Aristotle is wrong. It is a chicken-and-egg. There is something obvious about subject-predicate language, if one assumes that unified objects are part of nature, and not just conventional.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' is a meaning-assignment which makes all the axioms true [George/Velleman]
     Full Idea: A 'model' of a theory is an assignment of meanings to the symbols of its language which makes all of its axioms come out true.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: If the axioms are all true, and the theory is sound, then all of the theorems will also come out true.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Differences between isomorphic structures seem unimportant [George/Velleman]
     Full Idea: Mathematicians tend to regard the differences between isomorphic mathematical structures as unimportant.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This seems to be a pointer towards Structuralism as the underlying story in mathematics. The intrinsic character of so-called 'objects' seems unimportant. How theories map onto one another (and onto the world?) is all that matters?
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is a purely syntactic property, unlike the semantic property of soundness [George/Velleman]
     Full Idea: Consistency is a purely syntactic property, unlike the semantic property of soundness.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
A 'consistent' theory cannot contain both a sentence and its negation [George/Velleman]
     Full Idea: If there is a sentence such that both the sentence and its negation are theorems of a theory, then the theory is 'inconsistent'. Otherwise it is 'consistent'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness is a semantic property, unlike the purely syntactic property of consistency [George/Velleman]
     Full Idea: Soundness is a semantic property, unlike the purely syntactic property of consistency.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
5. Theory of Logic / K. Features of Logics / 4. Completeness
A 'complete' theory contains either any sentence or its negation [George/Velleman]
     Full Idea: If there is a sentence such that neither the sentence nor its negation are theorems of a theory, then the theory is 'incomplete'. Otherwise it is 'complete'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: Interesting questions are raised about undecidable sentences, irrelevant sentences, unknown sentences....
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Rational numbers give answers to division problems with integers [George/Velleman]
     Full Idea: We can think of rational numbers as providing answers to division problems involving integers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Cf. Idea 10102.
The integers are answers to subtraction problems involving natural numbers [George/Velleman]
     Full Idea: In defining the integers in set theory, our definition will be motivated by thinking of the integers as answers to subtraction problems involving natural numbers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Typical of how all of the families of numbers came into existence; they are 'invented' so that we can have answers to problems, even if we can't interpret the answers. It it is money, we may say the minus-number is a 'debt', but is it? Cf Idea 10106.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers provide answers to square root problems [George/Velleman]
     Full Idea: One reason for introducing the real numbers is to provide answers to square root problems.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Presumably the other main reasons is to deal with problems of exact measurement. It is interesting that there seem to be two quite distinct reasons for introducing the reals. Cf. Ideas 10102 and 10106.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Logicists say mathematics is applicable because it is totally general [George/Velleman]
     Full Idea: The logicist idea is that if mathematics is logic, and logic is the most general of disciplines, one that applies to all rational thought regardless of its content, then it is not surprising that mathematics is widely applicable.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.2)
     A reaction: Frege was keen to emphasise this. You are left wondering why pure logic is applicable to the physical world. The only account I can give is big-time Platonism, or Pythagoreanism. Logic reveals the engine-room of nature, where the design is done.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The classical mathematician believes the real numbers form an actual set [George/Velleman]
     Full Idea: Unlike the intuitionist, the classical mathematician believes in an actual set that contains all the real numbers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order induction is stronger as it covers all concepts, not just first-order definable ones [George/Velleman]
     Full Idea: The first-order version of the induction axiom is weaker than the second-order, because the latter applies to all concepts, but the first-order applies only to concepts definable by a formula in the first-order language of number theory.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7 n7)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The Incompleteness proofs use arithmetic to talk about formal arithmetic [George/Velleman]
     Full Idea: The idea behind the proofs of the Incompleteness Theorems is to use the language of Peano Arithmetic to talk about the formal system of Peano Arithmetic itself.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: The mechanism used is to assign a Gödel Number to every possible formula, so that all reasonings become instances of arithmetic.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A successor is the union of a set with its singleton [George/Velleman]
     Full Idea: For any set x, we define the 'successor' of x to be the set S(x) = x U {x}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This is the Fregean approach to successor, where the Dedekind approach takes 'successor' to be a primitive. Frege 1884:§76.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Frege's Theorem shows the Peano Postulates can be derived from Hume's Principle [George/Velleman]
     Full Idea: The derivability of Peano's Postulates from Hume's Principle in second-order logic has been dubbed 'Frege's Theorem', (though Frege would not have been interested, because he didn't think Hume's Principle gave an adequate definition of numebrs).
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.8 n1)
     A reaction: Frege said the numbers were the sets which were the extensions of the sets created by Hume's Principle.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory can prove the Peano Postulates [George/Velleman]
     Full Idea: The Peano Postulates can be proven in ZFC.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Talk of 'abstract entities' is more a label for the problem than a solution to it [George/Velleman]
     Full Idea: One might well wonder whether talk of abstract entities is less a solution to the empiricist's problem of how a priori knowledge is possible than it is a label for the problem.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Intro)
     A reaction: This pinpoints my view nicely. What the platonist postulates is remote, bewildering, implausible and useless!
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
If mathematics is not about particulars, observing particulars must be irrelevant [George/Velleman]
     Full Idea: As, in the logicist view, mathematics is about nothing particular, it is little wonder that nothing in particular needs to be observed in order to acquire mathematical knowledge.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002])
     A reaction: At the very least we can say that no one would have even dreamt of the general system of arithmetic is they hadn't had experience of the particulars. Frege thought generality ensured applicability, but extreme generality might entail irrelevance.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
In the unramified theory of types, the types are objects, then sets of objects, sets of sets etc. [George/Velleman]
     Full Idea: In the unramified theory of types, all objects are classified into a hierarchy of types. The lowest level has individual objects that are not sets. Next come sets whose elements are individuals, then sets of sets, etc. Variables are confined to types.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: The objects are Type 0, the basic sets Type 1, etc.
The theory of types seems to rule out harmless sets as well as paradoxical ones. [George/Velleman]
     Full Idea: The theory of types seems to rule out harmless sets as well as paradoxical ones. If a is an individual and b is a set of individuals, then in type theory we cannot talk about the set {a,b}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Since we cheerfully talk about 'Cicero and other Romans', this sounds like a rather disasterous weakness.
Type theory has only finitely many items at each level, which is a problem for mathematics [George/Velleman]
     Full Idea: A problem with type theory is that there are only finitely many individuals, and finitely many sets of individuals, and so on. The hierarchy may be infinite, but each level is finite. Mathematics required an axiom asserting infinitely many individuals.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Most accounts of mathematics founder when it comes to infinities. Perhaps we should just reject them?
Type theory prohibits (oddly) a set containing an individual and a set of individuals [George/Velleman]
     Full Idea: If a is an individual and b is a set of individuals, then in the theory of types we cannot talk about the set {a,b}, since it is not an individual or a set of individuals, ...but it is hard to see what harm can come from it.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Bounded quantification is originally finitary, as conjunctions and disjunctions [George/Velleman]
     Full Idea: In the first instance all bounded quantifications are finitary, for they can be viewed as abbreviations for conjunctions and disjunctions.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
     A reaction: This strikes me as quite good support for finitism. The origin of a concept gives a good guide to what it really means (not a popular view, I admit). When Aristotle started quantifying, I suspect of he thought of lists, not totalities.
Much infinite mathematics can still be justified finitely [George/Velleman]
     Full Idea: It is possible to use finitary reasoning to justify a significant part of infinitary mathematics.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.8)
     A reaction: This might save Hilbert's project, by gradually accepting into the fold all the parts which have been giving a finitist justification.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
The intuitionists are the idealists of mathematics [George/Velleman]
     Full Idea: The intuitionists are the idealists of mathematics.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
Gödel's First Theorem suggests there are truths which are independent of proof [George/Velleman]
     Full Idea: For intuitionists, truth is not independent of proof, but this independence is precisely what seems to be suggested by Gödel's First Incompleteness Theorem.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.8)
     A reaction: Thus Gödel was worse news for the Intuitionists than he was for Hilbert's Programme. Gödel himself responded by becoming a platonist about his unprovable truths.
9. Objects / C. Structure of Objects / 2. Hylomorphism / a. Hylomorphism
The unmoved mover and the soul show Aristotelian form as the ultimate mereological atom [Aristotle, by Koslicki]
     Full Idea: Aristotle's discussion of the unmoved mover and of the soul confirms the suspicion that form, when it is not thought of as the object represented in a definition, plays the role of the ultimate mereological atom within his system.
     From: report of Aristotle (works [c.330 BCE]) by Kathrin Koslicki - The Structure of Objects 6.6
     A reaction: Aristotle is concerned with which things are 'divisible', and he cites these two examples as indivisible, but they may be too unusual to offer an actual theory of how Aristotle builds up wholes from atoms. He denies atoms in matter.
9. Objects / C. Structure of Objects / 2. Hylomorphism / d. Form as unifier
The 'form' is the recipe for building wholes of a particular kind [Aristotle, by Koslicki]
     Full Idea: Thus in Aristotle we may think of an object's formal components as a sort of recipe for how to build wholes of that particular kind.
     From: report of Aristotle (works [c.330 BCE]) by Kathrin Koslicki - The Structure of Objects 7.2.5
     A reaction: In the elusive business of pinning down what Aristotle means by the crucial idea of 'form', this analogy strikes me as being quite illuminating. It would fit DNA in living things, and the design of an artifact.
11. Knowledge Aims / A. Knowledge / 1. Knowledge
For Aristotle, knowledge is of causes, and is theoretical, practical or productive [Aristotle, by Code]
     Full Idea: Aristotle thinks that in general we have knowledge or understanding when we grasp causes, and he distinguishes three fundamental types of knowledge - theoretical, practical and productive.
     From: report of Aristotle (works [c.330 BCE]) by Alan D. Code - Aristotle
     A reaction: Productive knowledge we tend to label as 'knowing how'. The centrality of causes for knowledge would get Aristotle nowadays labelled as a 'naturalist'. It is hard to disagree with his three types, though they may overlap.
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
The notion of a priori truth is absent in Aristotle [Aristotle, by Politis]
     Full Idea: The notion of a priori truth is conspicuously absent in Aristotle.
     From: report of Aristotle (works [c.330 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 1.5
     A reaction: Cf. Idea 11240.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Aristotle is a rationalist, but reason is slowly acquired through perception and experience [Aristotle, by Frede,M]
     Full Idea: Aristotle is a rationalist …but reason for him is a disposition which we only acquire over time. Its acquisition is made possible primarily by perception and experience.
     From: report of Aristotle (works [c.330 BCE]) by Michael Frede - Aristotle's Rationalism p.173
     A reaction: I would describe this process as the gradual acquisition of the skill of objectivity, which needs the right knowledge and concepts to evaluate new experiences.
12. Knowledge Sources / E. Direct Knowledge / 2. Intuition
Aristotle wants to fit common intuitions, and therefore uses language as a guide [Aristotle, by Gill,ML]
     Full Idea: Since Aristotle generally prefers a metaphysical theory that accords with common intuitions, he frequently relies on facts about language to guide his metaphysical claims.
     From: report of Aristotle (works [c.330 BCE]) by Mary Louise Gill - Aristotle on Substance Ch.5
     A reaction: I approve of his procedure. I take intuition to be largely rational justifications too complex for us to enunciate fully, and language embodies folk intuitions in its concepts (especially if the concepts occur in many languages).
14. Science / B. Scientific Theories / 1. Scientific Theory
Plato says sciences are unified around Forms; Aristotle says they're unified around substance [Aristotle, by Moravcsik]
     Full Idea: Plato's unity of science principle states that all - legitimate - sciences are ultimately about the Forms. Aristotle's principle states that all sciences must be, ultimately, about substances, or aspects of substances.
     From: report of Aristotle (works [c.330 BCE], 1) by Julius Moravcsik - Aristotle on Adequate Explanations 1
14. Science / D. Explanation / 1. Explanation / a. Explanation
Aristotelian explanations are facts, while modern explanations depend on human conceptions [Aristotle, by Politis]
     Full Idea: For Aristotle things which explain (the explanantia) are facts, which should not be associated with the modern view that says explanations are dependent on how we conceive and describe the world (where causes are independent of us).
     From: report of Aristotle (works [c.330 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 2.1
     A reaction: There must be some room in modern thought for the Aristotelian view, if some sort of robust scientific realism is being maintained against the highly linguistic view of philosophy found in the twentieth century.
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Aristotle's standard analysis of species and genus involves specifying things in terms of something more general [Aristotle, by Benardete,JA]
     Full Idea: The standard Aristotelian doctrine of species and genus in the theory of anything whatever involves specifying what the thing is in terms of something more general.
     From: report of Aristotle (works [c.330 BCE]) by José A. Benardete - Metaphysics: the logical approach Ch.10
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Aristotle regularly says that essential properties explain other significant properties [Aristotle, by Kung]
     Full Idea: The view that essential properties are those in virtue of which other significant properties of the subjects under investigation can be explained is encountered repeatedly in Aristotle's work.
     From: report of Aristotle (works [c.330 BCE]) by Joan Kung - Aristotle on Essence and Explanation IV
     A reaction: What does 'significant' mean here? I take it that the significant properties are the ones which explain the role, function and powers of the object.
18. Thought / A. Modes of Thought / 5. Rationality / c. Animal rationality
Aristotle and the Stoics denied rationality to animals, while Platonists affirmed it [Aristotle, by Sorabji]
     Full Idea: Aristotle, and also the Stoics, denied rationality to animals. …The Platonists, the Pythagoreans, and some more independent Aristotelians, did grant reason and intellect to animals.
     From: report of Aristotle (works [c.330 BCE]) by Richard Sorabji - Rationality 'Denial'
     A reaction: This is not the same as affirming or denying their consciousness. The debate depends on how rationality is conceived.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Corresponding to every concept there is a class (some of them sets) [George/Velleman]
     Full Idea: Corresponding to every concept there is a class (some classes will be sets, the others proper classes).
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
19. Language / E. Analyticity / 2. Analytic Truths
The notion of analytic truth is absent in Aristotle [Aristotle, by Politis]
     Full Idea: The notion of analytic truth is conspicuously absent in Aristotle.
     From: report of Aristotle (works [c.330 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 1.5
     A reaction: Cf. Idea 11239.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
Aristotle never actually says that man is a rational animal [Aristotle, by Fogelin]
     Full Idea: To the best of my knowledge (and somewhat to my surprise), Aristotle never actually says that man is a rational animal; however, he all but says it.
     From: report of Aristotle (works [c.330 BCE]) by Robert Fogelin - Walking the Tightrope of Reason Ch.1
     A reaction: When I read this I thought that this database would prove Fogelin wrong, but it actually supports him, as I can't find it in Aristotle either. Descartes refers to it in Med.Two. In Idea 5133 Aristotle does say that man is a 'social being'. But 22586!
24. Political Theory / A. Basis of a State / 1. A People / a. Human distinctiveness
God made man in his own image [Anon (Tor)]
     Full Idea: And God said, let us make man in our image, after our likeness.
     From: Anon (Tor) (01: Book of Genesis [c.750 BCE], 1.26)
     A reaction: Since we are obviously not identical in every way with God, we can presumably choose in which respects we think of ourselves as being like Him. Reason, understanding, beauty, goodness, consciousness? A troublesome verse, challenged by Darwin.
25. Social Practice / E. Policies / 5. Education / a. Aims of education
It is the mark of an educated mind to be able to entertain an idea without accepting it [Aristotle]
     Full Idea: It is the mark of an educated mind to be able to entertain an idea without accepting it.
     From: Aristotle (works [c.330 BCE])
     A reaction: The epigraph on a David Chalmers website. A wonderful remark, and it should be on the wall of every beginners' philosophy class. However, while it is in the spirit of Aristotle, it appears to be a misattribution with no ancient provenance.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Aristotle said the educated were superior to the uneducated as the living are to the dead [Aristotle, by Diog. Laertius]
     Full Idea: Aristotle was asked how much educated men were superior to those uneducated; "As much," he said, "as the living are to the dead."
     From: report of Aristotle (works [c.330 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 05.1.11
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
There are potential infinities (never running out), but actual infinity is incoherent [Aristotle, by Friend]
     Full Idea: Aristotle developed his own distinction between potential infinity (never running out) and actual infinity (there being a collection of an actual infinite number of things, such as places, times, objects). He decided that actual infinity was incoherent.
     From: report of Aristotle (works [c.330 BCE]) by Michčle Friend - Introducing the Philosophy of Mathematics 1.3
     A reaction: Friend argues, plausibly, that this won't do, since potential infinity doesn't make much sense if there is not an actual infinity of things to supply the demand. It seems to just illustrate how boggling and uncongenial infinity was to Aristotle.
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / a. Greek matter
Aristotle's matter can become any other kind of matter [Aristotle, by Wiggins]
     Full Idea: Aristotle's conception of matter permits any kind of matter to become any other kind of matter.
     From: report of Aristotle (works [c.330 BCE]) by David Wiggins - Substance 4.11.2
     A reaction: This is obviously crucial background information when we read Aristotle on matter. Our 92+ elements, and fixed fundamental particles, gives a quite different picture. Aristotle would discuss form and matter quite differently now.
26. Natural Theory / B. Natural Kinds / 5. Reference to Natural Kinds
The names of all the types of creature were given forever by Adam [Anon (Tor)]
     Full Idea: Whatsoever Adam called any living creature, the same is its name. And Adam called all the beasts by their names, and all the fowls of the air, and all the cattle of the field.
     From: Anon (Tor) (01: Book of Genesis [c.750 BCE], 02:20)
28. God / A. Divine Nature / 6. Divine Morality / b. Euthyphro question
And God saw the light, that it was good [Anon (Tor)]
     Full Idea: And God saw the light, that it was good.
     From: Anon (Tor) (01: Book of Genesis [c.750 BCE], 01.04)
     A reaction: The text seems to suggest that God did not decide that it was good, but that it conformed to a standard of goodness.
29. Religion / A. Polytheistic Religion / 2. Greek Polytheism
The concepts of gods arose from observing the soul, and the cosmos [Aristotle, by Sext.Empiricus]
     Full Idea: Aristotle said that the conception of gods arose among mankind from two originating causes, namely from events which concern the soul and from celestial phenomena.
     From: report of Aristotle (works [c.330 BCE], Frag 10) by Sextus Empiricus - Against the Physicists (two books) I.20
     A reaction: The cosmos suggests order, and possible creation. What do events of the soul suggest? It doesn't seem to be its non-physical nature, because Aristotle is more of a functionalist. Puzzling. (It says later that gods are like the soul).