Combining Texts

All the ideas for 'Prior Analytics', 'Philosophy of Mathematics' and 'What is innate and why'

unexpand these ideas     |    start again     |     specify just one area for these texts


66 ideas

2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions are wrong, because they change the set that is being defined? [Bostock]
     Full Idea: Poincaré suggested that what is wrong with an impredicative definition is that it allows the set defined to alter its composition as more sets are added to the theory.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Aristotelian syllogisms are three-part, subject-predicate, existentially committed, with laws of thought [Aristotle, by Hanna]
     Full Idea: Aristotle's logic is based on the triadic syllogism, the distinction between subject and one-place predicates, that universal claims have existential commitment, and bivalence, excluded middle and noncontradiction.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Robert Hanna - Rationality and Logic 2.2
Aristotle was the first to use schematic letters in logic [Aristotle, by Potter]
     Full Idea: It was Aristotle who initiated the use of the letter of the (Greek) alphabet 'schematically', to stand for an unspecified piece of language of some appropriate grammatical type.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 02 'Aris'
     A reaction: Did he invent it from scratch, or borrow it from the mathematicians? Euclid labels diagrams with letters.
Aristotelian sentences are made up by one of four 'formative' connectors [Aristotle, by Engelbretsen]
     Full Idea: For Aristotle there are four formatives for sentences: 'belongs to some', 'belongs to every', 'belongs to no', and 'does not belong to every'. These are 'copulae'. Aristotle would have written 'wise belongs to some man'.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by George Engelbretsen - Trees, Terms and Truth 3
     A reaction: A rather set-theoretic reading. This invites a Quinean scepticism about whether wisdom is some entity which can 'belong' to a person. It makes trope theory sound attractive, offering a unique wisdom that is integrated into that particular person.
Aristotelian identified 256 possible syllogisms, saying that 19 are valid [Aristotle, by Devlin]
     Full Idea: Aristotle identified four 'figures' of argument, based on combinations of Subject (S) and Predicate (P) and Middle term (M). The addition of 'all' and 'some', and 'has' and 'has not' got the property, resulted in 256 possible syllogisms, 19 of them valid.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Keith Devlin - Goodbye Descartes Ch.2
     A reaction: [Compressed version of Devlin] What Aristotle did was astonishing, and must be one of the key ideas of western civilization, even though a lot of his assumptions have been revised or rejected.
Aristotle replaced Plato's noun-verb form with unions of pairs of terms by one of four 'copulae' [Aristotle, by Engelbretsen/Sayward]
     Full Idea: Aristotle replaced the Platonic noun-verb account of logical syntax with a 'copular' account. A sentence is a pair of terms bound together logically (not necessarily grammatically) by one of four 'logical copulae' (every, none, some, not some).
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Engelbretsen,G/Sayward,C - Philosophical Logic: Intro to Advanced Topics 8
     A reaction: So the four copulas are are-all, are-never, are-sometimes, and are-sometime-not. Consider 'men' and 'mortal'. Alternatively, Idea 18909.
Aristotle listed nineteen valid syllogisms (though a few of them were wrong) [Aristotle, by Devlin]
     Full Idea: Aristotle listed a total of nineteen syllogisms involved in logical reasoning, though some of the ones on his list were subsequently shown to be invalid.
     From: report of Aristotle (Prior Analytics [c.328 BCE], Ch.1) by Keith Devlin - Goodbye Descartes
     A reaction: It is quite upsetting to think that the founding genius got some of it wrong, but that just shows how subtle and complex the analysis of rational thought can be.
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Aristotle's said some Fs are G or some Fs are not G, forgetting that there might be no Fs [Bostock on Aristotle]
     Full Idea: Aristotle's system accepted as correct some laws which nowadays we reject, for example |= (Some Fs are G) or (some Fs are not G). He failed to take into account the possibility of there being no Fs at all.
     From: comment on Aristotle (Prior Analytics [c.328 BCE]) by David Bostock - Intermediate Logic 8.4
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
There are three different deductions for actual terms, necessary terms and possible terms [Aristotle]
     Full Idea: Since to belong, to belong of necessity, and to be possible to belong are different, ..there will be different deductions for each; one deduction will be from necessary terms, one from terms which belong, and one from possible terms.
     From: Aristotle (Prior Analytics [c.328 BCE], 29b29-35)
     A reaction: Fitting and Mendelsohn cite this as the earliest thoughts on modal logic. but Kneale and Kneale say that Aristotle got into a muddle, and so was unable to create a workable system.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Classical interdefinitions of logical constants and quantifiers is impossible in intuitionism [Bostock]
     Full Idea: None of the classical ways of defining one logical constant in terms of others is available in intuitionist logic (and this includes the two quantifiers).
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
There is no single agreed structure for set theory [Bostock]
     Full Idea: There is so far no agreed set of axioms for set theory which is categorical, i.e. which does pick just one structure.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: This contrasts with Peano Arithmetic, which is categorical in its second-order version.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A 'proper class' cannot be a member of anything [Bostock]
     Full Idea: A 'proper class' cannot be a member of anything, neither of a set nor of another proper class.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We could add axioms to make sets either as small or as large as possible [Bostock]
     Full Idea: We could add the axiom that all sets are constructible (V = L), making the universe of sets as small as possible, or add the axiom that there is a supercompact cardinal (SC), making the universe as large as we no know how to.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: Bostock says most mathematicians reject the first option, and are undecided about the second option.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice relies on reference to sets that we are unable to describe [Bostock]
     Full Idea: The usual accounts of ZF are not restricted to subsets that we can describe, and that is what justifies the axiom of choice.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4 n36)
     A reaction: This contrasts interestingly with predicativism, which says we can only discuss things which we can describe or define. Something like verificationism hovers in the background.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Replacement enforces a 'limitation of size' test for the existence of sets [Bostock]
     Full Idea: The Axiom of Replacement (or the Axiom of Subsets, 'Aussonderung', Fraenkel 1922) in effect enforces the idea that 'limitation of size' is a crucial factor when deciding whether a proposed set or does not not exist.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is not decidable: there is no test of whether any formula is valid [Bostock]
     Full Idea: First-order logic is not decidable. That is, there is no test which can be applied to any arbitrary formula of that logic and which will tell one whether the formula is or is not valid (as proved by Church in 1936).
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
The completeness of first-order logic implies its compactness [Bostock]
     Full Idea: From the fact that the usual rules for first-level logic are complete (as proved by Gödel 1930), it follows that this logic is 'compact'.
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
     A reaction: The point is that the completeness requires finite proofs.
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Deduction is when we suppose one thing, and another necessarily follows [Aristotle]
     Full Idea: A deduction is a discourse in which, certain things having been supposed, something different from the things supposed results of necessity because these things are so.
     From: Aristotle (Prior Analytics [c.328 BCE], 24b18)
     A reaction: Notice that it is modal ('suppose', rather than 'know'), that necessity is involved, which is presumably metaphysical necessity, and that there are assumptions about what would be true, and not just what follows from what.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Aristotle places terms at opposite ends, joined by a quantified copula [Aristotle, by Sommers]
     Full Idea: Aristotle often preferred to formulate predications by placing the terms at opposite ends of the sentence and joining them by predicating expressions like 'belongs-to-some' or 'belongs-to-every'.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Fred Sommers - Intellectual Autobiography 'Conceptions'
     A reaction: This is Sommers's picture of Aristotle, which led Sommers to develop his modern Term Logic.
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
Aristotle's logic is based on the subject/predicate distinction, which leads him to substances and properties [Aristotle, by Benardete,JA]
     Full Idea: Basic to Aristotle's logic is the grammatical distinction between subject and predicate, which he glosses in terms of the contrast between a substance and its properties.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by José A. Benardete - Metaphysics: the logical approach Intro
     A reaction: The introduction of quantifiers and 'logical form' can't disguise the fact that we still talk about (and with) objects and predicates, because no one can think of any other way to talk.
5. Theory of Logic / G. Quantification / 1. Quantification
Affirming/denying sentences are universal, particular, or indeterminate [Aristotle]
     Full Idea: Affirming/denying sentences are universal, particular, or indeterminate. Belonging 'to every/to none' is universal; belonging 'to some/not to some/not to every' is particular; belonging or not belonging (without universal/particular) is indeterminate.
     From: Aristotle (Prior Analytics [c.328 BCE], 24a16)
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
Aristotelian logic has two quantifiers of the subject ('all' and 'some') [Aristotle, by Devlin]
     Full Idea: Aristotelian logic has two quantifiers of the subject ('all' and 'some'), and two ways to combine the subject with the predicate ('have', and 'have not'), giving four propositions: all-s-have-p, all-s-have-not-p, some-s-have-p, and some-s-have-not-p.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Keith Devlin - Goodbye Descartes Ch.2
     A reaction: Frege seems to have switched from 'some' to 'at-least-one'. Since then other quantifiers have been proposed. See, for example, Ideas 7806 and 6068.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Substitutional quantification is just standard if all objects in the domain have a name [Bostock]
     Full Idea: Substitutional quantification and quantification understood in the usual 'ontological' way will coincide when every object in the (ontological) domain has a name.
     From: David Bostock (Philosophy of Mathematics [2009], 7.3 n23)
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
The Deduction Theorem is what licenses a system of natural deduction [Bostock]
     Full Idea: The Deduction Theorem is what licenses a system of 'natural deduction' in the first place.
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox considers the meaning of 'The least number not named by this name' [Bostock]
     Full Idea: Berry's Paradox can be put in this form, by considering the alleged name 'The least number not named by this name'.
     From: David Bostock (Philosophy of Mathematics [2009], 8.1)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Each addition changes the ordinality but not the cardinality, prior to aleph-1 [Bostock]
     Full Idea: If you add to the ordinals you produce many different ordinals, each measuring the length of the sequence of ordinals less than it. They each have cardinality aleph-0. The cardinality eventually increases, but we can't say where this break comes.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
ω + 1 is a new ordinal, but its cardinality is unchanged [Bostock]
     Full Idea: If we add ω onto the end of 0,1,2,3,4..., it then has a different length, of ω+1. It has a different ordinal (since it can't be matched with its first part), but the same cardinal (since adding 1 makes no difference).
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: [compressed] The ordinals and cardinals coincide up to ω, but this is the point at which they come apart.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
A cardinal is the earliest ordinal that has that number of predecessors [Bostock]
     Full Idea: It is the usual procedure these days to identify a cardinal number with the earliest ordinal number that has that number of predecessors.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: This sounds circular, since you need to know the cardinal in order to decide which ordinal is the one you want, but, hey, what do I know?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Aleph-1 is the first ordinal that exceeds aleph-0 [Bostock]
     Full Idea: The cardinal aleph-1 is identified with the first ordinal to have more than aleph-0 members, and so on.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
     A reaction: That is, the succeeding infinite ordinals all have the same cardinal number of members (aleph-0), until the new total is triggered (at the number of the reals). This is Continuum Hypothesis territory.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Instead of by cuts or series convergence, real numbers could be defined by axioms [Bostock]
     Full Idea: In addition to cuts, or converging series, Cantor suggests we can simply lay down a set of axioms for the real numbers, and this can be done without any explicit mention of the rational numbers [note: the axioms are those for a complete ordered field].
     From: David Bostock (Philosophy of Mathematics [2009], 4.4)
     A reaction: It is interesting when axioms are best, and when not. Set theory depends entirely on axioms. Horsten and Halbach are now exploring treating truth as axiomatic. You don't give the 'nature' of the thing - just rules for its operation.
The number of reals is the number of subsets of the natural numbers [Bostock]
     Full Idea: It is not difficult to show that the number of the real numbers is the same as the number of all the subsets of the natural numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: The Continuum Hypothesis is that this is the next infinite number after the number of natural numbers. Why can't there be a number which is 'most' of the subsets of the natural numbers?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
For Eudoxus cuts in rationals are unique, but not every cut makes a real number [Bostock]
     Full Idea: As Eudoxus claimed, two distinct real numbers cannot both make the same cut in the rationals, for any two real numbers must be separated by a rational number. He did not say, though, that for every such cut there is a real number that makes it.
     From: David Bostock (Philosophy of Mathematics [2009], 4.4)
     A reaction: This is in Bostock's discussion of Dedekind's cuts. It seems that every cut is guaranteed to produce a real. Fine challenges the later assumption.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals are not actually contradictory, because they can be non-standard real numbers [Bostock]
     Full Idea: Non-standard natural numbers will yield non-standard rational and real numbers. These will include reciprocals which will be closer to 0 than any standard real number. These are like 'infinitesimals', so that notion is not actually a contradiction.
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Modern axioms of geometry do not need the real numbers [Bostock]
     Full Idea: A modern axiomatisation of geometry, such as Hilbert's (1899), does not need to claim the existence of real numbers anywhere in its axioms.
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5.ii)
     A reaction: This is despite the fact that geometry is reduced to algebra, and the real numbers are the equivalent of continuous lines. Bostock votes for a Greek theory of proportion in this role.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
The Peano Axioms describe a unique structure [Bostock]
     Full Idea: The Peano Axioms are categorical, meaning that they describe a unique structure.
     From: David Bostock (Philosophy of Mathematics [2009], 4.4 n20)
     A reaction: So if you think there is nothing more to the natural numbers than their structure, then the Peano Axioms give the essence of arithmetic. If you think that 'objects' must exist to generate a structure, there must be more to the numbers.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Hume's Principle is a definition with existential claims, and won't explain numbers [Bostock]
     Full Idea: Hume's Principle will not do as an implicit definition because it makes a positive claim about the size of the universe (which no mere definition can do), and because it does not by itself explain what the numbers are.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
Many things will satisfy Hume's Principle, so there are many interpretations of it [Bostock]
     Full Idea: Hume's Principle gives a criterion of identity for numbers, but it is obvious that many other things satisfy that criterion. The simplest example is probably the numerals (in any notation, decimal, binary etc.), giving many different interpretations.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
There are many criteria for the identity of numbers [Bostock]
     Full Idea: There is not just one way of giving a criterion of identity for numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege makes numbers sets to solve the Caesar problem, but maybe Caesar is a set! [Bostock]
     Full Idea: The Julius Caesar problem was one reason that led Frege to give an explicit definition of numbers as special sets. He does not appear to notice that the same problem affects his Axiom V for introducing sets (whether Caesar is or is not a set).
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: The Julius Caesar problem is a sceptical acid that eats into everything in philosophy of mathematics. You give all sorts of wonderful accounts of numbers, but at what point do you know that you now have a number, and not something else?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Numbers can't be positions, if nothing decides what position a given number has [Bostock]
     Full Idea: There is no ground for saying that a number IS a position, if the truth is that there is nothing to determine which number is which position.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: If numbers lose touch with the empirical ability to count physical objects, they drift off into a mad world where they crumble away.
Structuralism falsely assumes relations to other numbers are numbers' only properties [Bostock]
     Full Idea: Structuralism begins from a false premise, namely that numbers have no properties other than their relations to other numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 6.5)
     A reaction: Well said. Describing anything purely relationally strikes me as doomed, because you have to say why those things relate in those ways.
6. Mathematics / C. Sources of Mathematics / 3. Mathematical Nominalism
Nominalism about mathematics is either reductionist, or fictionalist [Bostock]
     Full Idea: Nominalism has two main versions, one which tries to 'reduce' the objects of mathematics to something simpler (Russell and Wittgenstein), and another which claims that such objects are mere 'fictions' which have no reality (Field).
     From: David Bostock (Philosophy of Mathematics [2009], 9)
Nominalism as based on application of numbers is no good, because there are too many applications [Bostock]
     Full Idea: The style of nominalism which aims to reduce statements about numbers to statements about their applications does not work for the natural numbers, because they have many applications, and it is arbitrary to choose just one of them.
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5.iii)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Actual measurement could never require the precision of the real numbers [Bostock]
     Full Idea: We all know that in practice no physical measurement can be 100 per cent accurate, and so it cannot require the existence of a genuinely irrational number, rather than some of the rational numbers close to it.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.3)
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Ordinals are mainly used adjectively, as in 'the first', 'the second'... [Bostock]
     Full Idea: The basic use of the ordinal numbers is their use as ordinal adjectives, in phrases such as 'the first', 'the second' and so on.
     From: David Bostock (Philosophy of Mathematics [2009], 9.5.iii)
     A reaction: That is because ordinals seem to attach to particulars, whereas cardinals seem to attach to groups. Then you say 'three is greater than four', it is not clear which type you are talking about.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Simple type theory has 'levels', but ramified type theory has 'orders' [Bostock]
     Full Idea: The simple theory of types distinguishes sets into different 'levels', but this is quite different from the distinction into 'orders' which is imposed by the ramified theory.
     From: David Bostock (Philosophy of Mathematics [2009], 8.1)
     A reaction: The ramified theory has both levels and orders (p.235). Russell's terminology is, apparently, inconsistent.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Neo-logicists meet the Caesar problem by saying Hume's Principle is unique to number [Bostock]
     Full Idea: The response of neo-logicists to the Julius Caesar problem is to strengthen Hume's Principle in the hope of ensuring that only numbers will satisfy it. They say the criterion of identity provided by HP is essential to number, and not to anything else.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
Neo-logicists agree that HP introduces number, but also claim that it suffices for the job [Bostock]
     Full Idea: The neo-logicists take up Frege's claim that Hume's Principle introduces a new concept (of a number), but unlike Frege they go on to claim that it by itself gives a complete account of that concept.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: So the big difference between Frege and neo-logicists is the Julius Caesar problem.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Treating numbers as objects doesn't seem like logic, since arithmetic fixes their totality [Bostock]
     Full Idea: If logic is neutral on the number of objects there are, then logicists can't construe numbers as objects, for arithmetic is certainly not neutral on the number of numbers there are. They must be treated in some other way, perhaps as numerical quantifiers.
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
If Hume's Principle is the whole story, that implies structuralism [Bostock]
     Full Idea: If Hume's Principle is all we are given, by way of explanation of what the numbers are, the only conclusion to draw would seem to be the structuralists' conclusion, ...studying all systems that satisfy that principle.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: Any approach that implies a set of matching interpretations will always imply structuralism. To avoid it, you need to pin the target down uniquely.
Many crucial logicist definitions are in fact impredicative [Bostock]
     Full Idea: Many of the crucial definitions in the logicist programme are in fact impredicative.
     From: David Bostock (Philosophy of Mathematics [2009], 8.2)
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Higher cardinalities in sets are just fairy stories [Bostock]
     Full Idea: In its higher reaches, which posit sets of huge cardinalities, set theory is just a fairy story.
     From: David Bostock (Philosophy of Mathematics [2009], 9.5.iii)
     A reaction: You can't say the higher reaches are fairy stories but the lower reaches aren't, if the higher is directly derived from the lower. The empty set and the singleton are fairy stories too. Bostock says the axiom of infinity triggers the fairy stories.
A fairy tale may give predictions, but only a true theory can give explanations [Bostock]
     Full Idea: A common view is that although a fairy tale may provide very useful predictions, it cannot provide explanations for why things happen as they do. In order to do that a theory must also be true (or, at least, an approximation to the truth).
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5)
     A reaction: Of course, fictionalism offers an explanation of mathematics as a whole, but not of the details (except as the implications of the initial fictional assumptions).
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
The best version of conceptualism is predicativism [Bostock]
     Full Idea: In my personal opinion, predicativism is the best version of conceptualism that we have yet discovered.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4)
     A reaction: Since conceptualism is a major player in the field, this makes predicativism a very important view. I won't vote Predicativist quite yet, but I'm tempted.
Conceptualism fails to grasp mathematical properties, infinity, and objective truth values [Bostock]
     Full Idea: Three simple objections to conceptualism in mathematics are that we do not ascribe mathematical properties to our ideas, that our ideas are presumably finite, and we don't think mathematics lacks truthvalue before we thought of it.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4)
     A reaction: [compressed; Bostock refers back to his Ch 2] Plus Idea 18134. On the whole I sympathise with conceptualism, so I will not allow myself to be impressed by any of these objections. (So, what's actually wrong with them.....?).
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
If abstracta only exist if they are expressible, there can only be denumerably many of them [Bostock]
     Full Idea: If an abstract object exists only when there is some suitable way of expressing it, then there are at most denumerably many abstract objects.
     From: David Bostock (Philosophy of Mathematics [2009], 8.2)
     A reaction: Fine by me. What an odd view, to think there are uncountably many abstract objects in existence, only a countable portion of which will ever be expressed! [ah! most people agree with me, p.243-4]
Predicativism makes theories of huge cardinals impossible [Bostock]
     Full Idea: Classical mathematicians say predicative mathematics omits areas of great interest, all concerning non-denumerable real numbers, such as claims about huge cardinals. There cannot be a predicative version of this theory.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: I'm not sure that anyone will really miss huge cardinals if they are prohibited, though cryptography seems to flirt with such things. Are we ever allowed to say that some entity conjured up by mathematicians is actually impossible?
If mathematics rests on science, predicativism may be the best approach [Bostock]
     Full Idea: It has been claimed that only predicative mathematics has a justification through its usefulness to science (an empiricist approach).
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: [compressed. Quine is the obvious candidate] I suppose predicativism gives your theory roots, whereas impredicativism is playing an abstract game.
If we can only think of what we can describe, predicativism may be implied [Bostock]
     Full Idea: If we accept the initial idea that we can think only of what we ourselves can describe, then something like the theory of predicativism quite naturally results
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: I hate the idea that we can only talk of what falls under a sortal, but 'what we can describe' is much more plausible. Whether or not you agree with this approach (I'm pondering it), this makes predicativism important.
The predicativity restriction makes a difference with the real numbers [Bostock]
     Full Idea: It is with the real numbers that the restrictions imposed by predicativity begin to make a real difference.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
The usual definitions of identity and of natural numbers are impredicative [Bostock]
     Full Idea: The predicative approach cannot accept either the usual definition of identity or the usual definition of the natural numbers, for both of these definitions are impredicative.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: [Bostock 237-8 gives details]
10. Modality / A. Necessity / 4. De re / De dicto modality
A deduction is necessary if the major (but not the minor) premise is also necessary [Aristotle]
     Full Idea: It sometimes results that the deduction becomes necessary when only one of the premises is necessary (not whatever premise it might be, however, but only the premise in relation to the major extreme [premise]).
     From: Aristotle (Prior Analytics [c.328 BCE], 30a15)
     A reaction: The qualification is brackets is said by Plantinga (1969) to be a recognition of the de re/ de dicto distinction (later taken up by Aquinas). Plantinga gives two examples to illustrate his reading.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Linguistic terms form a hierarchy, with higher terms predicable of increasing numbers of things [Aristotle, by Engelbretsen]
     Full Idea: According to Aristotle, the terms of a language form a finite hierarchy, where the higher terms are predicable of more things than are lower terms.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by George Engelbretsen - Trees, Terms and Truth 3
     A reaction: I would be a bit cautious about placing something precisely in a hierarchy according to how many things it can be predicated of. It is a start, though, in trying to give a decent account of generality, which is a major concept in philosophy.
18. Thought / B. Mechanics of Thought / 4. Language of Thought
If everything uses mentalese, ALL concepts must be innate! [Putnam]
     Full Idea: Fodor concludes that every predicate that a brain could learn to use must have a translation into the computer language of that brain. So no "new" concepts can be acquired: all concepts are innate!
     From: Hilary Putnam (What is innate and why [1980], p.407)
     A reaction: Some misunderstanding, surely? No one could be so daft as to think that everyone has an innate idea of an iPod. More basic innate building blocks for thought are quite plausible.
No machine language can express generalisations [Putnam]
     Full Idea: Computers have a built-in language, but not a language that contains quantifiers (that is, the words "all" and "some"). …So generalizations (containing "all") cannot ever be stated in machine language.
     From: Hilary Putnam (What is innate and why [1980], p.408)
     A reaction: Computers are too sophisticated to need quantification (which is crude). Computers can work with very precise and complex specifications of the domain of a given variable.
19. Language / F. Communication / 2. Assertion
In logic a proposition means the same when it is and when it is not asserted [Bostock]
     Full Idea: In Modus Ponens where the first premise is 'P' and the second 'P→Q', in the first premise P is asserted but in the second it is not. Yet it must mean the same in both premises, or it would be guilty of the fallacy of equivocation.
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
     A reaction: This is Geach's thought (leading to an objection to expressivism in ethics, that P means the same even if it is not expressed).