Combining Texts

All the ideas for 'Topics', 'The Principles of Chemistry' and 'What Required for Foundation for Maths?'

unexpand these ideas     |    start again     |     specify just one area for these texts


69 ideas

1. Philosophy / F. Analytic Philosophy / 2. Analysis by Division
Begin examination with basics, and subdivide till you can go no further [Aristotle]
     Full Idea: The examination must be carried on and begin from the primary classes and then go on step by step until further division is impossible.
     From: Aristotle (Topics [c.331 BCE], 109b17)
     A reaction: This is a good slogan for the analytic approach to thought. I take Aristotle (or possibly Socrates) to be the father of analysis, not Frege (though see Idea 9840). (He may be thinking of the tableau method of proof).
2. Reason / C. Styles of Reason / 1. Dialectic
Dialectic starts from generally accepted opinions [Aristotle]
     Full Idea: Reasoning is dialectical which reasons from generally accepted opinions.
     From: Aristotle (Topics [c.331 BCE], 100a30)
     A reaction: This is right at the heart of Aristotle's philosophical method, and Greek thinking generally. There are nice modern debates about 'folk' understanding, derived from science (e.g. quantum theory) which suggest that starting from normal views is a bad idea.
2. Reason / D. Definition / 1. Definitions
There can't be one definition of two things, or two definitions of the same thing [Aristotle]
     Full Idea: There cannot possibly be one definition of two things, or two definitions of the same thing.
     From: Aristotle (Topics [c.331 BCE], 154a11)
     A reaction: The second half of this is much bolder and more controversial, and plenty of modern thinkers would flatly reject it. Are definitions contextual, that is, designed for some specific human purpose. Must definitions be of causes?
Definitions are easily destroyed, since they can contain very many assertions [Aristotle]
     Full Idea: A definition is the easiest of all things to destroy; for, since it contains many assertions, the opportunities which it offers are very numerous, and the more abundant the material, the more quickly the reasoning can set to work.
     From: Aristotle (Topics [c.331 BCE], 155a03)
     A reaction: I quote this to show that Aristotle expected many definitions to be very long affairs (maybe even of book length?)
2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
     Full Idea: Definition provides us with the means for converting our intuitions into mathematically usable concepts.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
2. Reason / D. Definition / 5. Genus and Differentia
Differentia are generic, and belong with genus [Aristotle]
     Full Idea: The differentia, being generic in character, should be ranged with the genus.
     From: Aristotle (Topics [c.331 BCE], 101b18)
     A reaction: This does not mean that naming the differentia amounts to mere classification. I presume we can only state individual differences by using a language which is crammed full of universals.
'Genus' is part of the essence shared among several things [Aristotle]
     Full Idea: A 'genus' is that which is predicated in the category of essence of several things which differ in kind.
     From: Aristotle (Topics [c.331 BCE], 102a32)
     A reaction: Hence a genus is likely to be expressed by a universal, a one-over-many. A particular will be a highly individual collection of various genera, but what ensures the uniqueness of each thing, if they are indiscernible?
We describe the essence of a particular thing by means of its differentiae [Aristotle]
     Full Idea: We usually isolate the appropriate description of the essence of a particular thing by means of the differentiae which are peculiar to it.
     From: Aristotle (Topics [c.331 BCE], 108b05)
     A reaction: I take this to be important for showing the definition is more than mere categorisation. A good definition homes in the particular, by gradually narrowing down the differentiae.
The differentia indicate the qualities, but not the essence [Aristotle]
     Full Idea: No differentia indicates the essence [ti estin], but rather some quality, such as 'pedestrian' or 'biped'.
     From: Aristotle (Topics [c.331 BCE], 122b17)
     A reaction: We must disentangle this, since essence is what is definable, and definition seems to give us the essence, and yet it appears that definition only requires genus and differentia. Differentiae seem to be both generic and fine-grained. See Idea 12280!
In definitions the first term to be assigned ought to be the genus [Aristotle]
     Full Idea: In definitions the first term to be assigned ought to be the genus.
     From: Aristotle (Topics [c.331 BCE], 132a12)
     A reaction: We mustn't be deluded into thinking that nothing else is required. I take the increasing refinement of differentiae to be where the real action is. The genus gives you 70% of the explanation.
The genera and the differentiae are part of the essence [Aristotle]
     Full Idea: The genera and the differentiae are predicated in the category of essence.
     From: Aristotle (Topics [c.331 BCE], 153a19)
     A reaction: The definition is words, and the essence is real, so our best definition might not fully attain to the essence. Aristotle has us reaching out to the world through our definitions.
2. Reason / D. Definition / 6. Definition by Essence
The definition is peculiar to one thing, not common to many [Aristotle]
     Full Idea: The definition ought to be peculiar to one thing, not common to many.
     From: Aristotle (Topics [c.331 BCE], 149b24)
     A reaction: I take this to be very important, against those who think that definition is no more than mere categorisation. To explain, you must get down to the level of the individual. We must explain that uniquely docile tiger.
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
     Full Idea: When you have proved something you know not only that it is true, but why it must be true.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
     A reaction: Note the word 'must'. Presumably both the grounding and the necessitation of the truth are revealed.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
     Full Idea: The idea of 'generating' sets is only a metaphor - the existence of the hierarchy is established without appealing to such dubious notions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
     A reaction: Presumably there can be a 'dependence' or 'determination' relation which does not involve actual generation.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
     Full Idea: Our very notion of a set is that of an extensional plurality limited in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
     Full Idea: In the mainstream tradition of modern logic, beginning with Boole, Peirce and Schröder, descending through Löwenheim and Skolem to reach maturity with Tarski and his school ...saw logic as a branch of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-1)
     A reaction: [The lesser tradition, of Frege and Russell, says mathematics is a branch of logic]. Mayberry says the Fregean tradition 'has almost died out'.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
     Full Idea: First-order logic is very weak, but therein lies its strength. Its principle tools (Compactness, Completeness, Löwenheim-Skolem Theorems) can be established only because it is too weak to axiomatize either arithmetic or analysis.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.411-2)
     A reaction: He adds the proviso that this is 'unless we are dealing with structures on whose size we have placed an explicit, finite bound' (p.412-1).
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
     Full Idea: Second-order logic is a powerful tool of definition: by means of it alone we can capture mathematical structure up to isomorphism using simple axiom systems.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
     Full Idea: The 'logica magna' [of the Fregean tradition] has quantifiers ranging over a fixed domain, namely everything there is. In the Boolean tradition the domains differ from interpretation to interpretation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-2)
     A reaction: Modal logic displays both approaches, with different systems for global and local domains.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
     Full Idea: No logic which can axiomatize real analysis can have the Löwenheim-Skolem property.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
     Full Idea: The purpose of a 'classificatory' axiomatic theory is to single out an otherwise disparate species of structures by fixing certain features of morphology. ...The aim is to single out common features.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
     Full Idea: The central dogma of the axiomatic method is this: isomorphic structures are mathematically indistinguishable in their essential properties.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
     A reaction: Hence it is not that we have to settle for the success of a system 'up to isomorphism', since that was the original aim. The structures must differ in their non-essential properties, or they would be the same system.
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
     Full Idea: The purpose of what I am calling 'eliminatory' axiomatic theories is precisely to eliminate from mathematics those peculiar ideal and abstract objects that, on the traditional view, constitute its subject matter.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-1)
     A reaction: A very interesting idea. I have a natural antipathy to 'abstract objects', because they really mess up what could otherwise be a very tidy ontology. What he describes might be better called 'ignoring' axioms. The objects may 'exist', but who cares?
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
     Full Idea: No logic which can axiomatise arithmetic can be compact or complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
     A reaction: I take this to be because there are new truths in the transfinite level (as well as the problem of incompleteness).
5. Theory of Logic / L. Paradox / 2. Aporiai
Puzzles arise when reasoning seems equal on both sides [Aristotle]
     Full Idea: The equality of opposite reasonings is the cause of aporia; for it is when we reason on both [sides of a question] and it appears to us that everything can come about either way, that we are in a state of aporia about which of the two ways to take up.
     From: Aristotle (Topics [c.331 BCE], 145b17), quoted by Vassilis Politis - Aristotle and the Metaphysics 3.1
     A reaction: Other philosophers give up on the subject in this situation, but I love Aristotle because he takes this to be the place where philosophy begins.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
Unit is the starting point of number [Aristotle]
     Full Idea: They say that the unit [monada] is the starting point of number (and the point the starting-point of a line).
     From: Aristotle (Topics [c.331 BCE], 108b30)
     A reaction: Yes, despite Frege's objections in the early part of the 'Grundlagen' (1884). I take arithmetic to be rooted in counting, despite all abstract definitions of number by Frege and Dedekind. Identity gives the unit, which is countable. See also Topics 141b9
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
     Full Idea: Quantities for Greeks were concrete things - lines, surfaces, solids, times, weights. At the centre of their science of quantity was the beautiful theory of ratio and proportion (...in which the notion of number does not appear!).
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
     A reaction: [He credits Eudoxus, and cites Book V of Euclid]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
     Full Idea: The abstract objects of modern mathematics, the real numbers, were invented by the mathematicians of the seventeenth century in order to simplify and to generalize the Greek science of quantity.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
     Full Idea: In Cantor's new vision, the infinite, the genuine infinite, does not disappear, but presents itself in the guise of the absolute, as manifested in the species of all sets or the species of all ordinal numbers.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
     Full Idea: We may describe Cantor's achievement by saying, not that he tamed the infinite, but that he extended the finite.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
     Full Idea: If we grant, as surely we must, the central importance of proof and definition, then we must also grant that mathematics not only needs, but in fact has, foundations.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
     Full Idea: The ultimate principles upon which mathematics rests are those to which mathematicians appeal without proof; and the primitive concepts of mathematics ...themselves are grasped directly, if grasped at all, without the mediation of definition.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
     A reaction: This begs the question of whether the 'grasping' is purely a priori, or whether it derives from experience. I defend the latter, and Jenkins puts the case well.
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
     Full Idea: An account of the foundations of mathematics must specify four things: the primitive concepts for use in definitions, the rules governing definitions, the ultimate premises of proofs, and rules allowing advance from premises to conclusions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
     Full Idea: No axiomatic theory, formal or informal, of first or of higher order can logically play a foundational role in mathematics. ...It is obvious that you cannot use the axiomatic method to explain what the axiomatic method is.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
     Full Idea: The sole theoretical interest of first-order Peano arithmetic derives from the fact that it is a first-order reduct of a categorical second-order theory. Its axioms can be proved incomplete only because the second-order theory is categorical.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
     Full Idea: If we did not know that the second-order axioms characterise the natural numbers up to isomorphism, we should have no reason to suppose, a priori, that first-order Peano Arithmetic should be complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
     Full Idea: The idea that set theory must simply be identified with first-order Zermelo-Fraenkel is surprisingly widespread. ...The first-order axiomatic theory of sets is clearly inadequate as a foundation of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-2)
     A reaction: [He is agreeing with a quotation from Skolem].
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
     Full Idea: One does not have to translate 'ordinary' mathematics into the Zermelo-Fraenkel system: ordinary mathematics comes embodied in that system.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-1)
     A reaction: Mayberry seems to be a particular fan of set theory as spelling out the underlying facts of mathematics, though it has to be second-order.
Set theory is not just another axiomatised part of mathematics [Mayberry]
     Full Idea: The fons et origo of all confusion is the view that set theory is just another axiomatic theory and the universe of sets just another mathematical structure. ...The universe of sets ...is the world that all mathematical structures inhabit.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.416-1)
7. Existence / E. Categories / 3. Proposed Categories
There are ten categories: essence, quantity, quality, relation, place, time, position, state, activity, passivity [Aristotle]
     Full Idea: The four main types of predicates fall into ten categories: essence, quantity, quality, relation, place, time, position, state, activity, passivity.
     From: Aristotle (Topics [c.331 BCE], 103b20)
     A reaction: These are the standard ten categories of Aristotle. He is notable for the divisions not being sharp, and ten being a rough total. He is well aware of the limits of precision in such matters.
8. Modes of Existence / B. Properties / 1. Nature of Properties
An individual property has to exist (in past, present or future) [Aristotle]
     Full Idea: If it does not at present exist, or, if it has not existed in the past, or if it is not going to exist in the future, it will not be a property [idion] at all.
     From: Aristotle (Topics [c.331 BCE], 129a27)
     A reaction: This seems to cramp our style in counterfactual discussion. Can't we even mention an individual property if we believe that it will never exist. Utopian political discussion will have to cease!
8. Modes of Existence / B. Properties / 3. Types of Properties
An 'accident' is something which may possibly either belong or not belong to a thing [Aristotle]
     Full Idea: An 'accident' [sumbebekos] is something which may possibly either belong or not belong to any one and the self-same thing, such as 'sitting posture' or 'whiteness'. This is the best definition, because it tells us the essential meaning of the term itself.
     From: Aristotle (Topics [c.331 BCE], 102b07)
     A reaction: Thus a car could be red, or not red. Accidents are contingent. It does not follow that necessary properties are essential (see Idea 12262). There are accidents [sumbebekos], propria [idion] and essences [to ti en einai].
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
     Full Idea: The abstractness of the old fashioned real numbers has been replaced by generality in the modern theory of complete ordered fields.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: In philosophy, I'm increasingly thinking that we should talk much more of 'generality', and a great deal less about 'universals'. (By which I don't mean that redness is just the set of red things).
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Genus gives the essence better than the differentiae do [Aristotle]
     Full Idea: In assigning the essence [ti estin], it is more appropriate to state the genus than the differentiae; for he who describes 'man' as an 'animal' indicates his essence better than he who describes him as 'pedestrian'.
     From: Aristotle (Topics [c.331 BCE], 128a24)
     A reaction: See Idea 12279. This idea is only part of the story. My reading of this is simply that assigning a genus gives more information. We learn more about him when we say he is a man than when we say he is Socrates.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
In the case of a house the parts can exist without the whole, so parts are not the whole [Aristotle]
     Full Idea: In the case of a house, where the process of compounding the parts is obvious, though the parts exist, there is no reason why the whole should not be non-existent, and so the parts are not the same as the whole.
     From: Aristotle (Topics [c.331 BCE], 150a19)
     A reaction: Compare buying a piece of furniture, and being surprised to discover, when it is delivered, that it is self-assembly. This idea is a simple refutation of the claims of classical mereology, that wholes are just some parts. Aristotle uses modal claims.
9. Objects / D. Essence of Objects / 3. Individual Essences
Everything that is has one single essence [Aristotle]
     Full Idea: Everything that is has one single essence [en esti to einai].
     From: Aristotle (Topics [c.331 BCE], 141a36)
     A reaction: Does this include vague objects, and abstract 'objects'? Sceptics might ask what grounds this claim. Does Dr Jeckyll have two essences?
9. Objects / D. Essence of Objects / 7. Essence and Necessity / b. Essence not necessities
An 'idion' belongs uniquely to a thing, but is not part of its essence [Aristotle]
     Full Idea: A property [idion] is something which does not show the essence of a thing but belongs to it alone. ...No one calls anything a property which can possibly belong to something else.
     From: Aristotle (Topics [c.331 BCE], 102a18)
     A reaction: [See Charlotte Witt 106 on this] 'Property' is clearly a bad translation for such an individual item. Witt uses 'proprium', which is a necessary but nonessential property of something. Necessity is NOT the hallmark of essence. See Idea 12266.
9. Objects / E. Objects over Time / 11. End of an Object
Destruction is dissolution of essence [Aristotle]
     Full Idea: Destruction is a dissolution of essence.
     From: Aristotle (Topics [c.331 BCE], 153b30)
     A reaction: [plucked from context!] I can't think of a better way to define destruction, in order to distinguish it from damage. A vase is destroyed when its essential function cannot be recovered.
9. Objects / E. Objects over Time / 12. Origin as Essential
If two things are the same, they must have the same source and origin [Aristotle]
     Full Idea: When things are absolutely the same, their coming-into-being and destruction are also the same and so are the agents of their production and destruction.
     From: Aristotle (Topics [c.331 BCE], 152a02)
     A reaction: Thus Queen Elizabeth II has to be the result of that particular birth, and from those particular parents, as Kripke says? The inverse may not be true. Do twins have a single origin? Things that fission and then re-fuse differently? etc
9. Objects / F. Identity among Objects / 9. Sameness
'Same' is mainly for names or definitions, but also for propria, and for accidents [Aristotle]
     Full Idea: 'The same' is employed in several senses: its principal sense is for same name or same definition; a second sense occurs when sameness is applied to a property [idiu]; a third sense is applied to an accident.
     From: Aristotle (Topics [c.331 BCE], 103a24-33)
     A reaction: [compressed] 'Property' is better translated as 'proprium' - a property unique to a particular thing, but not essential - see Idea 12262. Things are made up of essence, propria and accidents, and three ways of being 'the same' are the result.
Two identical things have the same accidents, they are the same; if the accidents differ, they're different [Aristotle]
     Full Idea: If two things are the same then any accident of one must also be an accident of the other, and, if one of them is an accident of something else, so must the other be also. For, if there is any discrepancy on these points, obviously they are not the same.
     From: Aristotle (Topics [c.331 BCE], 152a36)
     A reaction: So what is always called 'Leibniz's Law' should actually be 'Aristotle's Law'! I can't see anything missing from the Aristotle version, but then, since most people think it is pretty obvious, you would expect the great stater of the obvious to get it.
Numerical sameness and generic sameness are not the same [Aristotle]
     Full Idea: Things which are the same specifically or generically are not necessarily the same or cannot possibly be the same numerically.
     From: Aristotle (Topics [c.331 BCE], 152b32)
     A reaction: See also Idea 12266. This looks to me to be a pretty precise anticipation of Peirce's type/token distinction, but without the terminology. It is reassuring that Aristotle spotted it, as that makes it more likely to be a genuine distinction.
10. Modality / A. Necessity / 6. Logical Necessity
Reasoning is when some results follow necessarily from certain claims [Aristotle]
     Full Idea: Reasoning [sullogismos] is a discussion in which, certain things having been laid down, something other than these things necessarily results through them.
     From: Aristotle (Topics [c.331 BCE], 100a25)
     A reaction: This is cited as the standard statement of the nature of logical necessity. One might challenge either the very word 'necessary', or the exact sense of the word employed here. Is it, in fact, metaphysical, or merely analytic?
14. Science / C. Induction / 1. Induction
Induction is the progress from particulars to universals [Aristotle]
     Full Idea: Induction is the progress from particulars to universals; if the skilled pilot is the best pilot and the skilled charioteer the best charioteer, then, in general, the skilled man is the best man in any particular sphere.
     From: Aristotle (Topics [c.331 BCE], 105a15)
     A reaction: It is a bit unclear whether we are deriving universal concepts, or merely general truths. Need general truths be absolute or necessary truths? Presumably occasionally the best person is not the most skilled, as in playing a musical instrument.
14. Science / C. Induction / 3. Limits of Induction
We say 'so in cases of this kind', but how do you decide what is 'of this kind'? [Aristotle]
     Full Idea: When it is necessary to establish the universal, people use the expression 'So in all cases of this kind'; but it is one of the most difficult tasks to define which of the terms proposed are 'of this kind' and which are not.
     From: Aristotle (Topics [c.331 BCE], 157a25)
     A reaction: It is particularly hard if induction is expressed as the search for universals, since the kind presumably is the universal, so the universal must be known before the induction can apply, which really is the most frightful nuisance for truth-seekers.
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
Friendship is preferable to money, since its excess is preferable [Aristotle]
     Full Idea: Friendship is preferable to money; for excess of friendship is preferable to excess of money.
     From: Aristotle (Topics [c.331 BCE], 118b07)
     A reaction: Compare Idea 12276, which gives a different criterion for choosing between virtues. This idea is an interesting qualification of the doctrine of the mean.
Justice and self-control are better than courage, because they are always useful [Aristotle]
     Full Idea: Justice [dikaiosune] and self-control [sophrosune] are preferable to courage, for the first two are always useful, but courage only sometimes.
     From: Aristotle (Topics [c.331 BCE], 117a36)
     A reaction: One could challenge his criterion. What of something which is absolutely vital on occasions, against something which is very mildly useful all the time? You may survive without justice, but not without courage. Compare Idea 12277.
23. Ethics / C. Virtue Theory / 4. External Goods / d. Friendship
We value friendship just for its own sake [Aristotle]
     Full Idea: We value friendship for its own sake, even if we are not likely to get anything else from it.
     From: Aristotle (Topics [c.331 BCE], 117a03)
     A reaction: In 'Ethics' he distinguishes some friendships which don't meet this requirement. Presumably true friendships survive all vicissitudes (except betrayal), but that makes such things fairly rare.
24. Political Theory / A. Basis of a State / 1. A People / a. Human distinctiveness
Man is intrinsically a civilized animal [Aristotle]
     Full Idea: It is an essential [kath' auto] property of man to be 'by nature a civilized animal'.
     From: Aristotle (Topics [c.331 BCE], 128b17)
     A reaction: I take this, along with man being intrinsically rational, to be the foundation of Aristotelian ethics. Given that we are civilized, self-evident criteria emerge for how to be good at it. A good person is, above all, a good citizen.
26. Natural Theory / B. Natural Kinds / 2. Defining Kinds
All water is the same, because of a certain similarity [Aristotle]
     Full Idea: Any water is said to be specifically the same as any other water because it has a certain similarity to it.
     From: Aristotle (Topics [c.331 BCE], 103a20)
     A reaction: (Cf. Idea 8153) It take this to be the hallmark of a natural kind, and we should not lose sight of it in the midst of discussions about rigid designation and essential identity. Tigers are only a natural kind insofar as they are indistinguishable.
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
Mendeleev saw three principles in nature: matter, force and spirit (where the latter seems to be essence) [Mendeleev, by Scerri]
     Full Idea: Mendeleev rejected one unifying principles in favour of three basic components of nature: matter (substance), force (energy), and spirit (soul). 'Spirit' is said to be what we now mean by essentialism - what is irreducibly peculiar to the object.
     From: report of Dmitri Mendeleev (The Principles of Chemistry [1870]) by Eric R. Scerri - The Periodic Table 04 'Making'
27. Natural Reality / F. Chemistry / 2. Modern Elements
Elements don't survive in compounds, but the 'substance' of the element does [Mendeleev]
     Full Idea: Neither mercury as a metal nor oxygen as a gas is contained in mercury oxide; it only contains the substance of the elements, just as steam only contains the substance of ice.
     From: Dmitri Mendeleev (The Principles of Chemistry [1870], I:23), quoted by Eric R. Scerri - The Periodic Table 04 'Nature'
     A reaction: [1889 edn] Scerri glosses the word 'substance' as meaning essence.
27. Natural Reality / F. Chemistry / 3. Periodic Table
Mendeleev focused on abstract elements, not simple substances, so he got to their essence [Mendeleev, by Scerri]
     Full Idea: Because he was attempting to classify abstract elements, not simple substances, Mendeleev was not misled by nonessential chemical properties.
     From: report of Dmitri Mendeleev (The Principles of Chemistry [1870]) by Eric R. Scerri - The Periodic Table 04 'Making'
     A reaction: I'm not fully clear about this, but I take it that Mendeleev stood back from the messy observations, and tried to see the underlying simpler principles. 'Simple substances' were ones that had not so far been decomposed.
Mendeleev had a view of elements which allowed him to overlook some conflicting observations [Mendeleev]
     Full Idea: His view of elements allowed Mendeleev to maintain the validity of the periodic table even in instances where observational evidence seemed to point against it.
     From: Dmitri Mendeleev (The Principles of Chemistry [1870]), quoted by Eric R. Scerri - The Periodic Table 04 'Making'
     A reaction: Mendeleev seems to have focused on abstract essences of elements, rather than on the simplest substances they had so far managed to isolate.
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
'Being' and 'oneness' are predicated of everything which exists [Aristotle]
     Full Idea: 'Being' and 'oneness' are predicated of everything which exists.
     From: Aristotle (Topics [c.331 BCE], 121a18)
     A reaction: Is 'oneness' predicated of water? So existence always was a predicate, it seems, until Kant told us it wasn't. That existence is a quantifier, not a predicate, seems to be up for question again these days.