Combining Texts

All the ideas for 'Topics', 'works' and 'A Mathematical Introduction to Logic (2nd)'

unexpand these ideas     |    start again     |     specify just one area for these texts


66 ideas

1. Philosophy / F. Analytic Philosophy / 2. Analysis by Division
Begin examination with basics, and subdivide till you can go no further [Aristotle]
     Full Idea: The examination must be carried on and begin from the primary classes and then go on step by step until further division is impossible.
     From: Aristotle (Topics [c.331 BCE], 109b17)
     A reaction: This is a good slogan for the analytic approach to thought. I take Aristotle (or possibly Socrates) to be the father of analysis, not Frege (though see Idea 9840). (He may be thinking of the tableau method of proof).
2. Reason / C. Styles of Reason / 1. Dialectic
Dialectic starts from generally accepted opinions [Aristotle]
     Full Idea: Reasoning is dialectical which reasons from generally accepted opinions.
     From: Aristotle (Topics [c.331 BCE], 100a30)
     A reaction: This is right at the heart of Aristotle's philosophical method, and Greek thinking generally. There are nice modern debates about 'folk' understanding, derived from science (e.g. quantum theory) which suggest that starting from normal views is a bad idea.
2. Reason / D. Definition / 1. Definitions
There can't be one definition of two things, or two definitions of the same thing [Aristotle]
     Full Idea: There cannot possibly be one definition of two things, or two definitions of the same thing.
     From: Aristotle (Topics [c.331 BCE], 154a11)
     A reaction: The second half of this is much bolder and more controversial, and plenty of modern thinkers would flatly reject it. Are definitions contextual, that is, designed for some specific human purpose. Must definitions be of causes?
Definitions are easily destroyed, since they can contain very many assertions [Aristotle]
     Full Idea: A definition is the easiest of all things to destroy; for, since it contains many assertions, the opportunities which it offers are very numerous, and the more abundant the material, the more quickly the reasoning can set to work.
     From: Aristotle (Topics [c.331 BCE], 155a03)
     A reaction: I quote this to show that Aristotle expected many definitions to be very long affairs (maybe even of book length?)
2. Reason / D. Definition / 5. Genus and Differentia
We describe the essence of a particular thing by means of its differentiae [Aristotle]
     Full Idea: We usually isolate the appropriate description of the essence of a particular thing by means of the differentiae which are peculiar to it.
     From: Aristotle (Topics [c.331 BCE], 108b05)
     A reaction: I take this to be important for showing the definition is more than mere categorisation. A good definition homes in the particular, by gradually narrowing down the differentiae.
The differentia indicate the qualities, but not the essence [Aristotle]
     Full Idea: No differentia indicates the essence [ti estin], but rather some quality, such as 'pedestrian' or 'biped'.
     From: Aristotle (Topics [c.331 BCE], 122b17)
     A reaction: We must disentangle this, since essence is what is definable, and definition seems to give us the essence, and yet it appears that definition only requires genus and differentia. Differentiae seem to be both generic and fine-grained. See Idea 12280!
In definitions the first term to be assigned ought to be the genus [Aristotle]
     Full Idea: In definitions the first term to be assigned ought to be the genus.
     From: Aristotle (Topics [c.331 BCE], 132a12)
     A reaction: We mustn't be deluded into thinking that nothing else is required. I take the increasing refinement of differentiae to be where the real action is. The genus gives you 70% of the explanation.
The genera and the differentiae are part of the essence [Aristotle]
     Full Idea: The genera and the differentiae are predicated in the category of essence.
     From: Aristotle (Topics [c.331 BCE], 153a19)
     A reaction: The definition is words, and the essence is real, so our best definition might not fully attain to the essence. Aristotle has us reaching out to the world through our definitions.
Differentia are generic, and belong with genus [Aristotle]
     Full Idea: The differentia, being generic in character, should be ranged with the genus.
     From: Aristotle (Topics [c.331 BCE], 101b18)
     A reaction: This does not mean that naming the differentia amounts to mere classification. I presume we can only state individual differences by using a language which is crammed full of universals.
'Genus' is part of the essence shared among several things [Aristotle]
     Full Idea: A 'genus' is that which is predicated in the category of essence of several things which differ in kind.
     From: Aristotle (Topics [c.331 BCE], 102a32)
     A reaction: Hence a genus is likely to be expressed by a universal, a one-over-many. A particular will be a highly individual collection of various genera, but what ensures the uniqueness of each thing, if they are indiscernible?
2. Reason / D. Definition / 6. Definition by Essence
The definition is peculiar to one thing, not common to many [Aristotle]
     Full Idea: The definition ought to be peculiar to one thing, not common to many.
     From: Aristotle (Topics [c.331 BCE], 149b24)
     A reaction: I take this to be very important, against those who think that definition is no more than mere categorisation. To explain, you must get down to the level of the individual. We must explain that uniquely docile tiger.
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Until the 1960s the only semantics was truth-tables [Enderton]
     Full Idea: Until the 1960s standard truth-table semantics were the only ones that there were.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.10.1)
     A reaction: The 1960s presumably marked the advent of possible worlds.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
'dom R' indicates the 'domain' of objects having a relation [Enderton]
     Full Idea: 'dom R' indicates the 'domain' of a relation, that is, the set of all objects that are members of ordered pairs and that have that relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'fld R' indicates the 'field' of all objects in the relation [Enderton]
     Full Idea: 'fld R' indicates the 'field' of a relation, that is, the set of all objects that are members of ordered pairs on either side of the relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'ran R' indicates the 'range' of objects being related to [Enderton]
     Full Idea: 'ran R' indicates the 'range' of a relation, that is, the set of all objects that are members of ordered pairs and that are related to by the first objects.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
We write F:A→B to indicate that A maps into B (the output of F on A is in B) [Enderton]
     Full Idea: We write F : A → B to indicate that A maps into B, that is, the domain of relating things is set A, and the things related to are all in B. If we add that F = B, then A maps 'onto' B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'F(x)' is the unique value which F assumes for a value of x [Enderton]
     Full Idea: F(x) is a 'function', which indicates the unique value which y takes in ∈ F. That is, F(x) is the value y which F assumes at x.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A relation is 'symmetric' on a set if every ordered pair has the relation in both directions [Enderton]
     Full Idea: A relation is 'symmetric' on a set if every ordered pair in the set has the relation in both directions.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'transitive' if it can be carried over from two ordered pairs to a third [Enderton]
     Full Idea: A relation is 'transitive' on a set if the relation can be carried over from two ordered pairs to a third.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
The 'powerset' of a set is all the subsets of a given set [Enderton]
     Full Idea: The 'powerset' of a set is all the subsets of a given set. Thus: PA = {x : x ⊆ A}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
Two sets are 'disjoint' iff their intersection is empty [Enderton]
     Full Idea: Two sets are 'disjoint' iff their intersection is empty (i.e. they have no members in common).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'domain' of a relation is the set of members of ordered pairs in the relation [Enderton]
     Full Idea: The 'domain' of a relation is the set of all objects that are members of ordered pairs that are members of the relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'relation' is a set of ordered pairs [Enderton]
     Full Idea: A 'relation' is a set of ordered pairs. The ordering relation on the numbers 0-3 is captured by - in fact it is - the set of ordered pairs {<0,1>,<0,2>,<0,3>,<1,2>,<1,3>,<2,3>}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
     A reaction: This can't quite be a definition of order among numbers, since it relies on the notion of a 'ordered' pair.
A 'function' is a relation in which each object is related to just one other object [Enderton]
     Full Idea: A 'function' is a relation which is single-valued. That is, for each object, there is only one object in the function set to which that object is related.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A function 'maps A into B' if the relating things are set A, and the things related to are all in B [Enderton]
     Full Idea: A function 'maps A into B' if the domain of relating things is set A, and the things related to are all in B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A function 'maps A onto B' if the relating things are set A, and the things related to are set B [Enderton]
     Full Idea: A function 'maps A onto B' if the domain of relating things is set A, and the things related to are set B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'reflexive' on a set if every member bears the relation to itself [Enderton]
     Full Idea: A relation is 'reflexive' on a set if every member of the set bears the relation to itself.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation satisfies 'trichotomy' if all pairs are either relations, or contain identical objects [Enderton]
     Full Idea: A relation satisfies 'trichotomy' on a set if every ordered pair is related (in either direction), or the objects are identical.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second [Enderton]
     Full Idea: A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
An 'equivalence relation' is a reflexive, symmetric and transitive binary relation [Enderton]
     Full Idea: An 'equivalence relation' is a binary relation which is reflexive, and symmetric, and transitive.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
We 'partition' a set into distinct subsets, according to each relation on its objects [Enderton]
     Full Idea: Equivalence classes will 'partition' a set. That is, it will divide it into distinct subsets, according to each relation on the set.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Inference not from content, but from the fact that it was said, is 'conversational implicature' [Enderton]
     Full Idea: The process is dubbed 'conversational implicature' when the inference is not from the content of what has been said, but from the fact that it has been said.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.7.3)
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Validity is either semantic (what preserves truth), or proof-theoretic (following procedures) [Enderton]
     Full Idea: The point of logic is to give an account of the notion of validity,..in two standard ways: the semantic way says that a valid inference preserves truth (symbol |=), and the proof-theoretic way is defined in terms of purely formal procedures (symbol |-).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.3..)
     A reaction: This division can be mirrored in mathematics, where it is either to do with counting or theorising about things in the physical world, or following sets of rules from axioms. Language can discuss reality, or play word-games.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth or tautology is a logical consequence of the empty set [Enderton]
     Full Idea: A is a logical truth (tautology) (|= A) iff it is a semantic consequence of the empty set of premises (φ |= A), that is, every interpretation makes A true.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.3.4)
     A reaction: So the final column of every line of the truth table will be T.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A truth assignment to the components of a wff 'satisfy' it if the wff is then True [Enderton]
     Full Idea: A truth assignment 'satisfies' a formula, or set of formulae, if it evaluates as True when all of its components have been assigned truth values.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.2)
     A reaction: [very roughly what Enderton says!] The concept becomes most significant when a large set of wff's is pronounced 'satisfied' after a truth assignment leads to them all being true.
5. Theory of Logic / K. Features of Logics / 3. Soundness
A proof theory is 'sound' if its valid inferences entail semantic validity [Enderton]
     Full Idea: If every proof-theoretically valid inference is semantically valid (so that |- entails |=), the proof theory is said to be 'sound'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.7)
5. Theory of Logic / K. Features of Logics / 4. Completeness
A proof theory is 'complete' if semantically valid inferences entail proof-theoretic validity [Enderton]
     Full Idea: If every semantically valid inference is proof-theoretically valid (so that |= entails |-), the proof-theory is said to be 'complete'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.7)
5. Theory of Logic / K. Features of Logics / 6. Compactness
Proof in finite subsets is sufficient for proof in an infinite set [Enderton]
     Full Idea: If a wff is tautologically implied by a set of wff's, it is implied by a finite subset of them; and if every finite subset is satisfiable, then so is the whole set of wff's.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 2.5)
     A reaction: [Enderton's account is more symbolic] He adds that this also applies to models. It is a 'theorem' because it can be proved. It is a major theorem in logic, because it brings the infinite under control, and who doesn't want that?
5. Theory of Logic / K. Features of Logics / 7. Decidability
Expressions are 'decidable' if inclusion in them (or not) can be proved [Enderton]
     Full Idea: A set of expressions is 'decidable' iff there exists an effective procedure (qv) that, given some expression, will decide whether or not the expression is included in the set (i.e. doesn't contradict it).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.7)
     A reaction: This is obviously a highly desirable feature for a really reliable system of expressions to possess. All finite sets are decidable, but some infinite sets are not.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
For a reasonable language, the set of valid wff's can always be enumerated [Enderton]
     Full Idea: The Enumerability Theorem says that for a reasonable language, the set of valid wff's can be effectively enumerated.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 2.5)
     A reaction: There are criteria for what makes a 'reasonable' language (probably specified to ensure enumerability!). Predicates and functions must be decidable, and the language must be finite.
5. Theory of Logic / L. Paradox / 2. Aporiai
Puzzles arise when reasoning seems equal on both sides [Aristotle]
     Full Idea: The equality of opposite reasonings is the cause of aporia; for it is when we reason on both [sides of a question] and it appears to us that everything can come about either way, that we are in a state of aporia about which of the two ways to take up.
     From: Aristotle (Topics [c.331 BCE], 145b17), quoted by Vassilis Politis - Aristotle and the Metaphysics 3.1
     A reaction: Other philosophers give up on the subject in this situation, but I love Aristotle because he takes this to be the place where philosophy begins.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
Unit is the starting point of number [Aristotle]
     Full Idea: They say that the unit [monada] is the starting point of number (and the point the starting-point of a line).
     From: Aristotle (Topics [c.331 BCE], 108b30)
     A reaction: Yes, despite Frege's objections in the early part of the 'Grundlagen' (1884). I take arithmetic to be rooted in counting, despite all abstract definitions of number by Frege and Dedekind. Identity gives the unit, which is countable. See also Topics 141b9
7. Existence / E. Categories / 3. Proposed Categories
There are ten categories: essence, quantity, quality, relation, place, time, position, state, activity, passivity [Aristotle]
     Full Idea: The four main types of predicates fall into ten categories: essence, quantity, quality, relation, place, time, position, state, activity, passivity.
     From: Aristotle (Topics [c.331 BCE], 103b20)
     A reaction: These are the standard ten categories of Aristotle. He is notable for the divisions not being sharp, and ten being a rough total. He is well aware of the limits of precision in such matters.
8. Modes of Existence / B. Properties / 1. Nature of Properties
An individual property has to exist (in past, present or future) [Aristotle]
     Full Idea: If it does not at present exist, or, if it has not existed in the past, or if it is not going to exist in the future, it will not be a property [idion] at all.
     From: Aristotle (Topics [c.331 BCE], 129a27)
     A reaction: This seems to cramp our style in counterfactual discussion. Can't we even mention an individual property if we believe that it will never exist. Utopian political discussion will have to cease!
8. Modes of Existence / B. Properties / 3. Types of Properties
An 'accident' is something which may possibly either belong or not belong to a thing [Aristotle]
     Full Idea: An 'accident' [sumbebekos] is something which may possibly either belong or not belong to any one and the self-same thing, such as 'sitting posture' or 'whiteness'. This is the best definition, because it tells us the essential meaning of the term itself.
     From: Aristotle (Topics [c.331 BCE], 102b07)
     A reaction: Thus a car could be red, or not red. Accidents are contingent. It does not follow that necessary properties are essential (see Idea 12262). There are accidents [sumbebekos], propria [idion] and essences [to ti en einai].
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Genus gives the essence better than the differentiae do [Aristotle]
     Full Idea: In assigning the essence [ti estin], it is more appropriate to state the genus than the differentiae; for he who describes 'man' as an 'animal' indicates his essence better than he who describes him as 'pedestrian'.
     From: Aristotle (Topics [c.331 BCE], 128a24)
     A reaction: See Idea 12279. This idea is only part of the story. My reading of this is simply that assigning a genus gives more information. We learn more about him when we say he is a man than when we say he is Socrates.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
In the case of a house the parts can exist without the whole, so parts are not the whole [Aristotle]
     Full Idea: In the case of a house, where the process of compounding the parts is obvious, though the parts exist, there is no reason why the whole should not be non-existent, and so the parts are not the same as the whole.
     From: Aristotle (Topics [c.331 BCE], 150a19)
     A reaction: Compare buying a piece of furniture, and being surprised to discover, when it is delivered, that it is self-assembly. This idea is a simple refutation of the claims of classical mereology, that wholes are just some parts. Aristotle uses modal claims.
9. Objects / D. Essence of Objects / 3. Individual Essences
Everything that is has one single essence [Aristotle]
     Full Idea: Everything that is has one single essence [en esti to einai].
     From: Aristotle (Topics [c.331 BCE], 141a36)
     A reaction: Does this include vague objects, and abstract 'objects'? Sceptics might ask what grounds this claim. Does Dr Jeckyll have two essences?
9. Objects / D. Essence of Objects / 7. Essence and Necessity / b. Essence not necessities
An 'idion' belongs uniquely to a thing, but is not part of its essence [Aristotle]
     Full Idea: A property [idion] is something which does not show the essence of a thing but belongs to it alone. ...No one calls anything a property which can possibly belong to something else.
     From: Aristotle (Topics [c.331 BCE], 102a18)
     A reaction: [See Charlotte Witt 106 on this] 'Property' is clearly a bad translation for such an individual item. Witt uses 'proprium', which is a necessary but nonessential property of something. Necessity is NOT the hallmark of essence. See Idea 12266.
9. Objects / E. Objects over Time / 11. End of an Object
Destruction is dissolution of essence [Aristotle]
     Full Idea: Destruction is a dissolution of essence.
     From: Aristotle (Topics [c.331 BCE], 153b30)
     A reaction: [plucked from context!] I can't think of a better way to define destruction, in order to distinguish it from damage. A vase is destroyed when its essential function cannot be recovered.
9. Objects / E. Objects over Time / 12. Origin as Essential
If two things are the same, they must have the same source and origin [Aristotle]
     Full Idea: When things are absolutely the same, their coming-into-being and destruction are also the same and so are the agents of their production and destruction.
     From: Aristotle (Topics [c.331 BCE], 152a02)
     A reaction: Thus Queen Elizabeth II has to be the result of that particular birth, and from those particular parents, as Kripke says? The inverse may not be true. Do twins have a single origin? Things that fission and then re-fuse differently? etc
9. Objects / F. Identity among Objects / 9. Sameness
'Same' is mainly for names or definitions, but also for propria, and for accidents [Aristotle]
     Full Idea: 'The same' is employed in several senses: its principal sense is for same name or same definition; a second sense occurs when sameness is applied to a property [idiu]; a third sense is applied to an accident.
     From: Aristotle (Topics [c.331 BCE], 103a24-33)
     A reaction: [compressed] 'Property' is better translated as 'proprium' - a property unique to a particular thing, but not essential - see Idea 12262. Things are made up of essence, propria and accidents, and three ways of being 'the same' are the result.
Two identical things have the same accidents, they are the same; if the accidents differ, they're different [Aristotle]
     Full Idea: If two things are the same then any accident of one must also be an accident of the other, and, if one of them is an accident of something else, so must the other be also. For, if there is any discrepancy on these points, obviously they are not the same.
     From: Aristotle (Topics [c.331 BCE], 152a36)
     A reaction: So what is always called 'Leibniz's Law' should actually be 'Aristotle's Law'! I can't see anything missing from the Aristotle version, but then, since most people think it is pretty obvious, you would expect the great stater of the obvious to get it.
Numerical sameness and generic sameness are not the same [Aristotle]
     Full Idea: Things which are the same specifically or generically are not necessarily the same or cannot possibly be the same numerically.
     From: Aristotle (Topics [c.331 BCE], 152b32)
     A reaction: See also Idea 12266. This looks to me to be a pretty precise anticipation of Peirce's type/token distinction, but without the terminology. It is reassuring that Aristotle spotted it, as that makes it more likely to be a genuine distinction.
10. Modality / A. Necessity / 6. Logical Necessity
Reasoning is when some results follow necessarily from certain claims [Aristotle]
     Full Idea: Reasoning [sullogismos] is a discussion in which, certain things having been laid down, something other than these things necessarily results through them.
     From: Aristotle (Topics [c.331 BCE], 100a25)
     A reaction: This is cited as the standard statement of the nature of logical necessity. One might challenge either the very word 'necessary', or the exact sense of the word employed here. Is it, in fact, metaphysical, or merely analytic?
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
Sentences with 'if' are only conditionals if they can read as A-implies-B [Enderton]
     Full Idea: Not all sentences using 'if' are conditionals. Consider 'if you want a banana, there is one in the kitchen'. The rough test is that a conditional can be rewritten as 'that A implies that B'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.6.4)
14. Science / C. Induction / 1. Induction
Induction is the progress from particulars to universals [Aristotle]
     Full Idea: Induction is the progress from particulars to universals; if the skilled pilot is the best pilot and the skilled charioteer the best charioteer, then, in general, the skilled man is the best man in any particular sphere.
     From: Aristotle (Topics [c.331 BCE], 105a15)
     A reaction: It is a bit unclear whether we are deriving universal concepts, or merely general truths. Need general truths be absolute or necessary truths? Presumably occasionally the best person is not the most skilled, as in playing a musical instrument.
14. Science / C. Induction / 3. Limits of Induction
We say 'so in cases of this kind', but how do you decide what is 'of this kind'? [Aristotle]
     Full Idea: When it is necessary to establish the universal, people use the expression 'So in all cases of this kind'; but it is one of the most difficult tasks to define which of the terms proposed are 'of this kind' and which are not.
     From: Aristotle (Topics [c.331 BCE], 157a25)
     A reaction: It is particularly hard if induction is expressed as the search for universals, since the kind presumably is the universal, so the universal must be known before the induction can apply, which really is the most frightful nuisance for truth-seekers.
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
Friendship is preferable to money, since its excess is preferable [Aristotle]
     Full Idea: Friendship is preferable to money; for excess of friendship is preferable to excess of money.
     From: Aristotle (Topics [c.331 BCE], 118b07)
     A reaction: Compare Idea 12276, which gives a different criterion for choosing between virtues. This idea is an interesting qualification of the doctrine of the mean.
Justice and self-control are better than courage, because they are always useful [Aristotle]
     Full Idea: Justice [dikaiosune] and self-control [sophrosune] are preferable to courage, for the first two are always useful, but courage only sometimes.
     From: Aristotle (Topics [c.331 BCE], 117a36)
     A reaction: One could challenge his criterion. What of something which is absolutely vital on occasions, against something which is very mildly useful all the time? You may survive without justice, but not without courage. Compare Idea 12277.
23. Ethics / C. Virtue Theory / 4. External Goods / d. Friendship
We value friendship just for its own sake [Aristotle]
     Full Idea: We value friendship for its own sake, even if we are not likely to get anything else from it.
     From: Aristotle (Topics [c.331 BCE], 117a03)
     A reaction: In 'Ethics' he distinguishes some friendships which don't meet this requirement. Presumably true friendships survive all vicissitudes (except betrayal), but that makes such things fairly rare.
24. Political Theory / A. Basis of a State / 1. A People / a. Human distinctiveness
Man is intrinsically a civilized animal [Aristotle]
     Full Idea: It is an essential [kath' auto] property of man to be 'by nature a civilized animal'.
     From: Aristotle (Topics [c.331 BCE], 128b17)
     A reaction: I take this, along with man being intrinsically rational, to be the foundation of Aristotelian ethics. Given that we are civilized, self-evident criteria emerge for how to be good at it. A good person is, above all, a good citizen.
26. Natural Theory / B. Natural Kinds / 2. Defining Kinds
All water is the same, because of a certain similarity [Aristotle]
     Full Idea: Any water is said to be specifically the same as any other water because it has a certain similarity to it.
     From: Aristotle (Topics [c.331 BCE], 103a20)
     A reaction: (Cf. Idea 8153) It take this to be the hallmark of a natural kind, and we should not lose sight of it in the midst of discussions about rigid designation and essential identity. Tigers are only a natural kind insofar as they are indistinguishable.
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / b. Heat
Heat is a state of vibration, not a substance [Joule]
     Full Idea: We consider heat not as a substance but as a state of vibration.
     From: James Joule (works [1870]), quoted by Peter Watson - Convergence 01 'Nature's'
     A reaction: The puzzle is that giving accurate accounts of vibrations, heat and movement require a quantitative substance, energy. But all we have here is movement, and the denial of a substance. Energy is 'nature's currency system'.
Joule showed that energy converts to heat, and heat to energy [Joule, by Papineau]
     Full Idea: James Joule established the equivalence of heat and mechanical energy, in the sense of showing that a specific amount of heat will always be produced by the expenditure of a given amount of energy, and vice versa.
     From: report of James Joule (works [1870]) by David Papineau - Thinking about Consciousness App 4.2
     A reaction: This was a major step towards the law of conservation of energy.
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
'Being' and 'oneness' are predicated of everything which exists [Aristotle]
     Full Idea: 'Being' and 'oneness' are predicated of everything which exists.
     From: Aristotle (Topics [c.331 BCE], 121a18)
     A reaction: Is 'oneness' predicated of water? So existence always was a predicate, it seems, until Kant told us it wasn't. That existence is a quantifier, not a predicate, seems to be up for question again these days.