Combining Texts

All the ideas for 'Topics', 'The Blue and Brown Notebooks' and 'Why the Universe Exists'

unexpand these ideas     |    start again     |     specify just one area for these texts


77 ideas

1. Philosophy / F. Analytic Philosophy / 2. Analysis by Division
Begin examination with basics, and subdivide till you can go no further [Aristotle]
     Full Idea: The examination must be carried on and begin from the primary classes and then go on step by step until further division is impossible.
     From: Aristotle (Topics [c.331 BCE], 109b17)
     A reaction: This is a good slogan for the analytic approach to thought. I take Aristotle (or possibly Socrates) to be the father of analysis, not Frege (though see Idea 9840). (He may be thinking of the tableau method of proof).
2. Reason / C. Styles of Reason / 1. Dialectic
Dialectic starts from generally accepted opinions [Aristotle]
     Full Idea: Reasoning is dialectical which reasons from generally accepted opinions.
     From: Aristotle (Topics [c.331 BCE], 100a30)
     A reaction: This is right at the heart of Aristotle's philosophical method, and Greek thinking generally. There are nice modern debates about 'folk' understanding, derived from science (e.g. quantum theory) which suggest that starting from normal views is a bad idea.
2. Reason / D. Definition / 1. Definitions
There can't be one definition of two things, or two definitions of the same thing [Aristotle]
     Full Idea: There cannot possibly be one definition of two things, or two definitions of the same thing.
     From: Aristotle (Topics [c.331 BCE], 154a11)
     A reaction: The second half of this is much bolder and more controversial, and plenty of modern thinkers would flatly reject it. Are definitions contextual, that is, designed for some specific human purpose. Must definitions be of causes?
Definitions are easily destroyed, since they can contain very many assertions [Aristotle]
     Full Idea: A definition is the easiest of all things to destroy; for, since it contains many assertions, the opportunities which it offers are very numerous, and the more abundant the material, the more quickly the reasoning can set to work.
     From: Aristotle (Topics [c.331 BCE], 155a03)
     A reaction: I quote this to show that Aristotle expected many definitions to be very long affairs (maybe even of book length?)
2. Reason / D. Definition / 5. Genus and Differentia
Differentia are generic, and belong with genus [Aristotle]
     Full Idea: The differentia, being generic in character, should be ranged with the genus.
     From: Aristotle (Topics [c.331 BCE], 101b18)
     A reaction: This does not mean that naming the differentia amounts to mere classification. I presume we can only state individual differences by using a language which is crammed full of universals.
'Genus' is part of the essence shared among several things [Aristotle]
     Full Idea: A 'genus' is that which is predicated in the category of essence of several things which differ in kind.
     From: Aristotle (Topics [c.331 BCE], 102a32)
     A reaction: Hence a genus is likely to be expressed by a universal, a one-over-many. A particular will be a highly individual collection of various genera, but what ensures the uniqueness of each thing, if they are indiscernible?
We describe the essence of a particular thing by means of its differentiae [Aristotle]
     Full Idea: We usually isolate the appropriate description of the essence of a particular thing by means of the differentiae which are peculiar to it.
     From: Aristotle (Topics [c.331 BCE], 108b05)
     A reaction: I take this to be important for showing the definition is more than mere categorisation. A good definition homes in the particular, by gradually narrowing down the differentiae.
The differentia indicate the qualities, but not the essence [Aristotle]
     Full Idea: No differentia indicates the essence [ti estin], but rather some quality, such as 'pedestrian' or 'biped'.
     From: Aristotle (Topics [c.331 BCE], 122b17)
     A reaction: We must disentangle this, since essence is what is definable, and definition seems to give us the essence, and yet it appears that definition only requires genus and differentia. Differentiae seem to be both generic and fine-grained. See Idea 12280!
In definitions the first term to be assigned ought to be the genus [Aristotle]
     Full Idea: In definitions the first term to be assigned ought to be the genus.
     From: Aristotle (Topics [c.331 BCE], 132a12)
     A reaction: We mustn't be deluded into thinking that nothing else is required. I take the increasing refinement of differentiae to be where the real action is. The genus gives you 70% of the explanation.
The genera and the differentiae are part of the essence [Aristotle]
     Full Idea: The genera and the differentiae are predicated in the category of essence.
     From: Aristotle (Topics [c.331 BCE], 153a19)
     A reaction: The definition is words, and the essence is real, so our best definition might not fully attain to the essence. Aristotle has us reaching out to the world through our definitions.
2. Reason / D. Definition / 6. Definition by Essence
The definition is peculiar to one thing, not common to many [Aristotle]
     Full Idea: The definition ought to be peculiar to one thing, not common to many.
     From: Aristotle (Topics [c.331 BCE], 149b24)
     A reaction: I take this to be very important, against those who think that definition is no more than mere categorisation. To explain, you must get down to the level of the individual. We must explain that uniquely docile tiger.
5. Theory of Logic / L. Paradox / 2. Aporiai
Puzzles arise when reasoning seems equal on both sides [Aristotle]
     Full Idea: The equality of opposite reasonings is the cause of aporia; for it is when we reason on both [sides of a question] and it appears to us that everything can come about either way, that we are in a state of aporia about which of the two ways to take up.
     From: Aristotle (Topics [c.331 BCE], 145b17), quoted by Vassilis Politis - Aristotle and the Metaphysics 3.1
     A reaction: Other philosophers give up on the subject in this situation, but I love Aristotle because he takes this to be the place where philosophy begins.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
Unit is the starting point of number [Aristotle]
     Full Idea: They say that the unit [monada] is the starting point of number (and the point the starting-point of a line).
     From: Aristotle (Topics [c.331 BCE], 108b30)
     A reaction: Yes, despite Frege's objections in the early part of the 'Grundlagen' (1884). I take arithmetic to be rooted in counting, despite all abstract definitions of number by Frege and Dedekind. Identity gives the unit, which is countable. See also Topics 141b9
7. Existence / E. Categories / 3. Proposed Categories
There are ten categories: essence, quantity, quality, relation, place, time, position, state, activity, passivity [Aristotle]
     Full Idea: The four main types of predicates fall into ten categories: essence, quantity, quality, relation, place, time, position, state, activity, passivity.
     From: Aristotle (Topics [c.331 BCE], 103b20)
     A reaction: These are the standard ten categories of Aristotle. He is notable for the divisions not being sharp, and ten being a rough total. He is well aware of the limits of precision in such matters.
8. Modes of Existence / B. Properties / 1. Nature of Properties
An individual property has to exist (in past, present or future) [Aristotle]
     Full Idea: If it does not at present exist, or, if it has not existed in the past, or if it is not going to exist in the future, it will not be a property [idion] at all.
     From: Aristotle (Topics [c.331 BCE], 129a27)
     A reaction: This seems to cramp our style in counterfactual discussion. Can't we even mention an individual property if we believe that it will never exist. Utopian political discussion will have to cease!
8. Modes of Existence / B. Properties / 3. Types of Properties
An 'accident' is something which may possibly either belong or not belong to a thing [Aristotle]
     Full Idea: An 'accident' [sumbebekos] is something which may possibly either belong or not belong to any one and the self-same thing, such as 'sitting posture' or 'whiteness'. This is the best definition, because it tells us the essential meaning of the term itself.
     From: Aristotle (Topics [c.331 BCE], 102b07)
     A reaction: Thus a car could be red, or not red. Accidents are contingent. It does not follow that necessary properties are essential (see Idea 12262). There are accidents [sumbebekos], propria [idion] and essences [to ti en einai].
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Genus gives the essence better than the differentiae do [Aristotle]
     Full Idea: In assigning the essence [ti estin], it is more appropriate to state the genus than the differentiae; for he who describes 'man' as an 'animal' indicates his essence better than he who describes him as 'pedestrian'.
     From: Aristotle (Topics [c.331 BCE], 128a24)
     A reaction: See Idea 12279. This idea is only part of the story. My reading of this is simply that assigning a genus gives more information. We learn more about him when we say he is a man than when we say he is Socrates.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
In the case of a house the parts can exist without the whole, so parts are not the whole [Aristotle]
     Full Idea: In the case of a house, where the process of compounding the parts is obvious, though the parts exist, there is no reason why the whole should not be non-existent, and so the parts are not the same as the whole.
     From: Aristotle (Topics [c.331 BCE], 150a19)
     A reaction: Compare buying a piece of furniture, and being surprised to discover, when it is delivered, that it is self-assembly. This idea is a simple refutation of the claims of classical mereology, that wholes are just some parts. Aristotle uses modal claims.
9. Objects / D. Essence of Objects / 3. Individual Essences
Everything that is has one single essence [Aristotle]
     Full Idea: Everything that is has one single essence [en esti to einai].
     From: Aristotle (Topics [c.331 BCE], 141a36)
     A reaction: Does this include vague objects, and abstract 'objects'? Sceptics might ask what grounds this claim. Does Dr Jeckyll have two essences?
9. Objects / D. Essence of Objects / 7. Essence and Necessity / b. Essence not necessities
An 'idion' belongs uniquely to a thing, but is not part of its essence [Aristotle]
     Full Idea: A property [idion] is something which does not show the essence of a thing but belongs to it alone. ...No one calls anything a property which can possibly belong to something else.
     From: Aristotle (Topics [c.331 BCE], 102a18)
     A reaction: [See Charlotte Witt 106 on this] 'Property' is clearly a bad translation for such an individual item. Witt uses 'proprium', which is a necessary but nonessential property of something. Necessity is NOT the hallmark of essence. See Idea 12266.
9. Objects / E. Objects over Time / 11. End of an Object
Destruction is dissolution of essence [Aristotle]
     Full Idea: Destruction is a dissolution of essence.
     From: Aristotle (Topics [c.331 BCE], 153b30)
     A reaction: [plucked from context!] I can't think of a better way to define destruction, in order to distinguish it from damage. A vase is destroyed when its essential function cannot be recovered.
9. Objects / E. Objects over Time / 12. Origin as Essential
If two things are the same, they must have the same source and origin [Aristotle]
     Full Idea: When things are absolutely the same, their coming-into-being and destruction are also the same and so are the agents of their production and destruction.
     From: Aristotle (Topics [c.331 BCE], 152a02)
     A reaction: Thus Queen Elizabeth II has to be the result of that particular birth, and from those particular parents, as Kripke says? The inverse may not be true. Do twins have a single origin? Things that fission and then re-fuse differently? etc
9. Objects / F. Identity among Objects / 9. Sameness
'Same' is mainly for names or definitions, but also for propria, and for accidents [Aristotle]
     Full Idea: 'The same' is employed in several senses: its principal sense is for same name or same definition; a second sense occurs when sameness is applied to a property [idiu]; a third sense is applied to an accident.
     From: Aristotle (Topics [c.331 BCE], 103a24-33)
     A reaction: [compressed] 'Property' is better translated as 'proprium' - a property unique to a particular thing, but not essential - see Idea 12262. Things are made up of essence, propria and accidents, and three ways of being 'the same' are the result.
Two identical things have the same accidents, they are the same; if the accidents differ, they're different [Aristotle]
     Full Idea: If two things are the same then any accident of one must also be an accident of the other, and, if one of them is an accident of something else, so must the other be also. For, if there is any discrepancy on these points, obviously they are not the same.
     From: Aristotle (Topics [c.331 BCE], 152a36)
     A reaction: So what is always called 'Leibniz's Law' should actually be 'Aristotle's Law'! I can't see anything missing from the Aristotle version, but then, since most people think it is pretty obvious, you would expect the great stater of the obvious to get it.
Numerical sameness and generic sameness are not the same [Aristotle]
     Full Idea: Things which are the same specifically or generically are not necessarily the same or cannot possibly be the same numerically.
     From: Aristotle (Topics [c.331 BCE], 152b32)
     A reaction: See also Idea 12266. This looks to me to be a pretty precise anticipation of Peirce's type/token distinction, but without the terminology. It is reassuring that Aristotle spotted it, as that makes it more likely to be a genuine distinction.
10. Modality / A. Necessity / 6. Logical Necessity
Reasoning is when some results follow necessarily from certain claims [Aristotle]
     Full Idea: Reasoning [sullogismos] is a discussion in which, certain things having been laid down, something other than these things necessarily results through them.
     From: Aristotle (Topics [c.331 BCE], 100a25)
     A reaction: This is cited as the standard statement of the nature of logical necessity. One might challenge either the very word 'necessary', or the exact sense of the word employed here. Is it, in fact, metaphysical, or merely analytic?
14. Science / C. Induction / 1. Induction
Induction is the progress from particulars to universals [Aristotle]
     Full Idea: Induction is the progress from particulars to universals; if the skilled pilot is the best pilot and the skilled charioteer the best charioteer, then, in general, the skilled man is the best man in any particular sphere.
     From: Aristotle (Topics [c.331 BCE], 105a15)
     A reaction: It is a bit unclear whether we are deriving universal concepts, or merely general truths. Need general truths be absolute or necessary truths? Presumably occasionally the best person is not the most skilled, as in playing a musical instrument.
14. Science / C. Induction / 3. Limits of Induction
We say 'so in cases of this kind', but how do you decide what is 'of this kind'? [Aristotle]
     Full Idea: When it is necessary to establish the universal, people use the expression 'So in all cases of this kind'; but it is one of the most difficult tasks to define which of the terms proposed are 'of this kind' and which are not.
     From: Aristotle (Topics [c.331 BCE], 157a25)
     A reaction: It is particularly hard if induction is expressed as the search for universals, since the kind presumably is the universal, so the universal must be known before the induction can apply, which really is the most frightful nuisance for truth-seekers.
16. Persons / D. Continuity of the Self / 3. Reference of 'I'
'I' is a subject in 'I am in pain' and an object in 'I am bleeding' [Wittgenstein, by McGinn]
     Full Idea: 'I' is used as a subject in 'I am in pain', ....and used as an object in 'I am bleeding'.
     From: report of Ludwig Wittgenstein (The Blue and Brown Notebooks [1936], pp. 66-7) by Colin McGinn - Subjective View: sec qualities and indexicals 4
     A reaction: How about 'my wound is painful'? Does that have the logical form of a conversation? This idea is incorrect. Shoemaker (1968) suggests that the subjective use is immune to error, unlike the object use.
19. Language / F. Communication / 6. Interpreting Language / b. Indeterminate translation
The doctrine of indeterminacy of translation seems implied by the later Wittgenstein [Wittgenstein, by Quine]
     Full Idea: Perhaps the doctrine of indeterminacy of translation will have little air of paradox for readers familiar with Wittgenstein's latter-day remarks on meaning.
     From: report of Ludwig Wittgenstein (The Blue and Brown Notebooks [1936], II.§16 n) by Willard Quine - Word and Object II.§16 n
     A reaction: This may be right, and I am inclined to link the names of Wittgenstein and Quine among those who led philosophy up a relativistic and sceptical cul-de-sac for many years. You can think too hard, you know.
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
Justice and self-control are better than courage, because they are always useful [Aristotle]
     Full Idea: Justice [dikaiosune] and self-control [sophrosune] are preferable to courage, for the first two are always useful, but courage only sometimes.
     From: Aristotle (Topics [c.331 BCE], 117a36)
     A reaction: One could challenge his criterion. What of something which is absolutely vital on occasions, against something which is very mildly useful all the time? You may survive without justice, but not without courage. Compare Idea 12277.
Friendship is preferable to money, since its excess is preferable [Aristotle]
     Full Idea: Friendship is preferable to money; for excess of friendship is preferable to excess of money.
     From: Aristotle (Topics [c.331 BCE], 118b07)
     A reaction: Compare Idea 12276, which gives a different criterion for choosing between virtues. This idea is an interesting qualification of the doctrine of the mean.
23. Ethics / C. Virtue Theory / 4. External Goods / d. Friendship
We value friendship just for its own sake [Aristotle]
     Full Idea: We value friendship for its own sake, even if we are not likely to get anything else from it.
     From: Aristotle (Topics [c.331 BCE], 117a03)
     A reaction: In 'Ethics' he distinguishes some friendships which don't meet this requirement. Presumably true friendships survive all vicissitudes (except betrayal), but that makes such things fairly rare.
24. Political Theory / A. Basis of a State / 1. A People / a. Human distinctiveness
Man is intrinsically a civilized animal [Aristotle]
     Full Idea: It is an essential [kath' auto] property of man to be 'by nature a civilized animal'.
     From: Aristotle (Topics [c.331 BCE], 128b17)
     A reaction: I take this, along with man being intrinsically rational, to be the foundation of Aristotelian ethics. Given that we are civilized, self-evident criteria emerge for how to be good at it. A good person is, above all, a good citizen.
26. Natural Theory / B. Natural Kinds / 2. Defining Kinds
All water is the same, because of a certain similarity [Aristotle]
     Full Idea: Any water is said to be specifically the same as any other water because it has a certain similarity to it.
     From: Aristotle (Topics [c.331 BCE], 103a20)
     A reaction: (Cf. Idea 8153) It take this to be the hallmark of a natural kind, and we should not lose sight of it in the midst of discussions about rigid designation and essential identity. Tigers are only a natural kind insofar as they are indistinguishable.
27. Natural Reality / A. Classical Physics / 1. Mechanics / d. Gravity
Gravity is unusual, in that it always attracts and never repels [New Sci.]
     Full Idea: Gravity is an odd sort of force, not least because it only ever works one way. Electromagnetism attracts and repels, but with gravity there are only positive masses always attract.
     From: New Scientist writers (Why the Universe Exists [2017], 05)
     A reaction: This leads to speculation about anti-gravity, but there is no current evidence for it.
27. Natural Reality / B. Modern Physics / 1. Relativity / b. General relativity
In the Big Bang general relativity fails, because gravity is too powerful [New Sci.]
     Full Idea: At the origin of the universe gravity becomes so powerful that general relativity breaks down, giving infinity for every answer.
     From: New Scientist writers (Why the Universe Exists [2017], 09)
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Quantum electrodynamics incorporates special relativity and quantum mechanics [New Sci.]
     Full Idea: The theory of electromagnetism that incorporates both special relativity and quantum mechanics is quantum electrodynamics (QED). It was developed by Dirac and others, and perfected in the 1940s. The field is a collection of quanta.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: This builds on Maxwell's earlier classical theory. QED is said to be the best theory in all of physics.
Photons have zero rest mass, so virtual photons have infinite range [New Sci.]
     Full Idea: Photons, the field quanta of the electromagnetic force, have zero rest mass, so virtual photons can exist indefinitely and travel any distance, meaning the electromagnetic force has an infinite range.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
In the standard model all the fundamental force fields merge at extremely high energies [New Sci.]
     Full Idea: The standard model says that the fields of all fundamental forces should merge at extremely high energies, meaning there is also a unified, high-energy field out there.
     From: New Scientist writers (Why the Universe Exists [2017], 03)
     A reaction: Not quite sure what 'out there' means. This idea is linked to the quest for dark energy. Is this unified phenomenon only found near the Big Bang?
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Electrons move fast, so are subject to special relativity [New Sci.]
     Full Idea: Electrons in atoms move at high speeds, so they are subject to the special theory of relativity.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: Presumably this implies a frame of reference, and defining velocities relative to other electrons. Plus time-dilation?
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / a. Chromodynamics
The strong force is repulsive at short distances, strong at medium, and fades at long [New Sci.]
     Full Idea: Experiments show that the nuclear binding force does not follow the inverse square law, but is repulsive at the shortest distances, then attractive, then fades away rapidly as distance increases further.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: So how does it know when to be strong? Magnetism doesn't vary according to distance, and light obeys the inverse square law, because everything is decided at the output. - See 21151 for an explanation. It interacts after departure.
The strong force binds quarks tight, and the nucleus more weakly [New Sci.]
     Full Idea: The strong force holds quarks together within protons and neutrons, and residual effects of the strong force bind protons (whch repel one another) and neutrons together in nuclei.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: So the force is much stronger between quarks (which can't escape), and only 'residual' in the nucleus, which must be why smashing nuclei open is fairly easy, but smashin protons open needs higher energies.
Gluons, the particles carrying the strong force, interact because of their colour charge [New Sci.]
     Full Idea: In QCD the particles that carry the strong force are called gluons. ...Gluons carry their own colour charges, so they can interact with each other (unlike photons) via the strong nuclear force (which limits the range of the force).
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: So the force varies in strength with distance because the degree of separation among the spreading gluons varies? The force has one range, which is squashed when close, effective at medium, and loses touch with distance?
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / b. Quarks
Three different colours of quark (as in the proton) can cancel out to give no colour [New Sci.]
     Full Idea: Just as mixing three colours of light gives white, so the three colour charges of quarks can add up to give no colour. This is what happens in the proton, which always contains one blue-charge quark, one red and one green.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
Classifying hadrons revealed two symmetry patterns, produced by three basic elements [New Sci.]
     Full Idea: Classifying hadrons according to charge, strangeness and spin revealed patterns of eight and ten particles (SU(3) symmetery). The mathematics then showed that these are built from a basic group of only three members.
     From: New Scientist writers (Why the Universe Exists [2017], 01)
Quarks in threes can build hadrons with spin ½ or with spin 3/2 [New Sci.]
     Full Idea: Quarks in threes can build hadrons with spin ½ (proton, duu; neutron, ddu; lambda, dus), or with spin 3/2 (omega-minus, sss).
     From: New Scientist writers (Why the Universe Exists [2017], 01)
27. Natural Reality / B. Modern Physics / 4. Standard Model / b. Standard model
Three particles enable the weak force: W+ and W- are charged, and Z° is not [New Sci.]
     Full Idea: The quantum field theory of the weak force needs three carrier particles. The W+ and W- are electrically charged, and enable the weak force to change the charge of a particle. The Z° is uncharged, and mediates weak interactions with no charge change.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
The weak force particles are heavy, so the force has a short range [New Sci.]
     Full Idea: The W and Z particles are heavy, and so cannot travel far from their parents. The weak force therefore has a very short range.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
Why do the charges of the very different proton and electron perfectly match up? [New Sci.]
     Full Idea: Why do the proton and electron charges mirror each other so perfectly when they are such different particles?
     From: New Scientist writers (Why the Universe Exists [2017], 04)
     A reaction: We seem to have reached a common stage in science, where we have a wonderful descriptive model (the Standard Model), but we cannot explain why what is modelled is the way it is.
The Standard Model cannot explain dark energy, survival of matter, gravity, or force strength [New Sci.]
     Full Idea: The standard model cannot explain dark matter, or dark energy (which is causing expansion to accelerate). It cannot explain how matter survived annihilation with anti-matter in the Big Bang, or explain gravity. The strength of each force is unexplained.
     From: New Scientist writers (Why the Universe Exists [2017], 06)
     A reaction: [compressed] P.141 adds that the model has to be manipulated to keep the Higgs mass low enough.
The four fundamental forces (gravity, electromagnetism, weak and strong) are the effects of particles [New Sci.]
     Full Idea: There are four fundamental forces: gravity, electromagnetism, and the weak and strong nuclear forces. Particle physics has so far failed to encompass the force of gravity. The forces that shape our world are themselves the effect of particles.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: Philosophers must take note of the fact that forces are the effects of particles. Common sense pictures forces imposed on particles, like throwing a tennis ball, but the particles are actually the sources of force. The gravitino is speculative.
The weak force explains beta decay, and the change of type by quarks and leptons [New Sci.]
     Full Idea: The beta decay of the neutron (into a proton, an electron and an antineutrino) can be described in terms of the weak force, which is 10,000 times weaker than the strong force. It allows the quarks and leptons to change from one type to another.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: This seems to make it the key source of radioactivity. Perhaps it should be called the Force of Change?
27. Natural Reality / B. Modern Physics / 4. Standard Model / c. Particle properties
Particles are spread out, with wave-like properties, and higher energy shortens the wavelength [New Sci.]
     Full Idea: Particles obeying the laws of quantum mechanics have wave-like properties - moving as a quantum wave-function, spread out in space, with wavelengths that get shorter as their energy increases.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: Thus X-rays are dangerous, but long wave radio is not. De Broglie's equation.
Quarks have red, green or blue colour charge (akin to electric charge) [New Sci.]
     Full Idea: Quarks have a property akin to electric charge, called their colour charge. It comes in three varieties, red, green and blue.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
Fermions, with spin ½, are antisocial, and cannot share quantum states [New Sci.]
     Full Idea: Particles with half-integer spin, such as electrons, protons or quarks (all spin ½) have an asymmetry in their wavefunction that makes them antisocial. These particles (Fermions) cannot share a quantum state.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: This is said to explain the complexity of matter, with carbon an especially good example.
Spin is akin to rotation, and is easily measured in a magnetic field [New Sci.]
     Full Idea: Spin is a quantum-mechanical property of a particle akin to rotation about its own axis. Particles of different spins respond to magnetic fields in different ways, so it is a relatively easy thing to measure.
     From: New Scientist writers (Why the Universe Exists [2017], 04)
     A reaction: I wish I knew what 'akin to' meant. Maybe particles are not rigid bodies, so they cannot spin in the way a top can? It must be an electro-magnetic property. Idea 21166 says spin has two possible directions.
Spin is a built-in ration of angular momentum [New Sci.]
     Full Idea: Spin is a built-in ration of angular momentum.
     From: New Scientist writers (Why the Universe Exists [2017], 01)
     A reaction: As an outsider all I can do is collect descriptions of such properties from the experts. The experts appear to be happy with the numbers inserted in the equations.
27. Natural Reality / B. Modern Physics / 4. Standard Model / d. Mass
The mass of protons and neutrinos is mostly binding energy, not the quarks [New Sci.]
     Full Idea: Most of a proton's or neutrino's mass is contained in the interaction energies of a 'sea' of quarks, antiquarks and gluons that bind them. ...You might feel solid, but in fact you're 99 per cent binding energy.
     From: New Scientist writers (Why the Universe Exists [2017], 04)
     A reaction: This is because energy is equivalent to mass (although gluons are said to have energy but no mass - puzzled by that). This is a fact which needs a bit of time to digest. Once you've grasped we are full of space, you still have understood it.
Gravitional mass turns out to be the same as inertial mass [New Sci.]
     Full Idea: There are two types of mass: gravitational mass quantifies how strongly an object feels gravity, while inertial mass quantifies an object's resistance to acceleration. There proven equality is at the heart of General Relativity.
     From: New Scientist writers (Why the Universe Exists [2017], 05)
     A reaction: It had never occurred to me that these two values might come apart. Doesn't their identical values demonstrate that they are in fact the same thing? Sounds like Hesperus/Phosphorus to me. The book calls it 'mysterious'.
27. Natural Reality / B. Modern Physics / 4. Standard Model / e. Protons
Neutrons are slightly heavier than protons, and decay into them by emitting an electron [New Sci.]
     Full Idea: The proton (938.3 MeV) is lighter than the neutron (939.6 MeV) and does not decay, but the heavier neutron can change into a proton by emitting an electron. (If you gather a bucketful of neutrons, after ten minutes only half of them would be left).
     From: New Scientist writers (Why the Universe Exists [2017], 01)
     A reaction: Protons are more or less eternal, but some theories have them decaying after billions of years. Smashing protons together is a popular pastime for physicists.
Top, bottom, charm and strange quarks quickly decay into up and down [New Sci.]
     Full Idea: Quarks can change from one variety to another, and the top, bottom, charm and strange quarks all rapidly decay to the up and down quarks of everyday life.
     From: New Scientist writers (Why the Universe Exists [2017], 01)
     A reaction: Hence the universe is largely composed of up and down quarks and electrons. The other quarks seem to be more important in the early universe.
27. Natural Reality / B. Modern Physics / 4. Standard Model / f. Neutrinos
Neutrinos were proposed as the missing energy in neutron beta decay [New Sci.]
     Full Idea: When a neutron decays into a proton and an electron (one example of beta decay), the energy of the two particles adds up to less than the starting energy of the neutron. Pauli and Fermi concluded that a neutrino (an electron antineutrino) is emitted.
     From: New Scientist writers (Why the Universe Exists [2017], 01)
     A reaction: I'm wondering how much they could infer about the nature of the new particle (which was only confirmed 26 years later).
Only neutrinos spin anticlockwise [New Sci.]
     Full Idea: Neutrinos are the only particles that seem just to spin anticlockwise.
     From: New Scientist writers (Why the Universe Exists [2017], 06)
     A reaction: See 21166. Anti-neutrino spin is the opposite way. Which way up do you hold the neutrino when pronouncing that it is 'anticlockwise?
27. Natural Reality / B. Modern Physics / 4. Standard Model / g. Anti-matter
Standard antineutrinos have opposite spin and opposite lepton number [New Sci.]
     Full Idea: In the conventional standard model neutrinos have antiparticles - which spin in the opposite direction, and have the opposite lepton number.
     From: New Scientist writers (Why the Universe Exists [2017], 05)
27. Natural Reality / B. Modern Physics / 5. Unified Models / a. Electro-weak unity
The symmetry of unified electromagnetic and weak forces was broken by the Higgs field [New Sci.]
     Full Idea: In the very early hot universe the electromagnetic and weak nuclear forces were one. The early emergence of the Higgs field led to electroweak symmetry breaking. The W and Z bosons grew fat, and the photon raced away mass-free.
     From: New Scientist writers (Why the Universe Exists [2017], 07)
27. Natural Reality / B. Modern Physics / 5. Unified Models / b. String theory
String theory might be tested by colliding strings to make bigger 'stringballs' [New Sci.]
     Full Idea: A future accelerator might create 'stringballs', when two strings slam into one another and, rather than combining to form a stretched string, make a tangled ball. Finding them would prove string theory.
     From: New Scientist writers (Why the Universe Exists [2017], 08)
     A reaction: This is the only possible test for string theory which I have seen suggested. How do you 'slam strings together'?
String theory offers a quantum theory of gravity, by describing the graviton [New Sci.]
     Full Idea: String theory works as a quantum theory of gravity because string vibrations can describe gravitons, the hypothetical carriers of the gravitational force.
     From: New Scientist writers (Why the Universe Exists [2017], 09)
     A reaction: Presumably the main aim of a quantum theory of gravity is to include gravitons within particle theory. This idea has to be a main attraction of string theory. Compare Idea 21166.
String theory is now part of 11-dimensional M-Theory, involving p-branes [New Sci.]
     Full Idea: String theory has now been incorporated into Ed Witten's M-Theory, which is a mathematical framework that lives in 11-dimensional space-time, involving higher-dimensional objects called p-branes, of which strings are a special case.
     From: New Scientist writers (Why the Universe Exists [2017], 09)
Supersymmetric string theory can be expressed using loop quantum gravity [New Sci.]
     Full Idea: String theory, together with its supersymmetric particles, has recently been rewritten in the space-time described by loop quantum gravity (which says that space-time ust be made from finite chunks).
     From: New Scientist writers (Why the Universe Exists [2017], 09)
27. Natural Reality / B. Modern Physics / 5. Unified Models / c. Supersymmetry
Supersymmetry has extra heavy bosons and heavy fermions [New Sci.]
     Full Idea: Supersymmetry posits heavy boson partners for all fermions, and heavy fermions for all bosons.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: The main Fermions are electron, proton and quark. Do extra bosons imply extra forces? Peter Higgs favours supersymmetry.
Only supersymmetry offers to incorporate gravity into the scheme [New Sci.]
     Full Idea: Peter Higgs says he is a fan of supersymmetry, largely because it seems to be the only route by which gravity can be brought into the scheme.
     From: New Scientist writers (Why the Universe Exists [2017], 03)
     A reaction: Peter Higgs proposed the Higgs boson (now discovered). This seems a very good reason to favour supersymmetry. A grand unified theory that left out gravity doesn't seem to be unified quite grandly enough.
The evidence for supersymmetry keeps failing to appear [New Sci.]
     Full Idea: The old front-runner theory, supersymmetry, has fallen from grace as the Large Hadron Collider keeps failing to find it.
     From: New Scientist writers (Why the Universe Exists [2017], 07)
Supersymmetry says particles and superpartners were unities, but then split [New Sci.]
     Full Idea: The key to supersymmetry is that in the high-energy soup of the early universe, particles and their superpartners were indistinguishable. Each pair existed as single massless entities. With expansion and cooling this supersymmetry broke down.
     From: New Scientist writers (Why the Universe Exists [2017], 08)
27. Natural Reality / C. Space / 4. Substantival Space
The Higgs field means even low energy space is not empty [New Sci.]
     Full Idea: The point about the Higgs field is that even the lowest-energy state of space is not empty.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: So where is the Higgs field located? Even if there is no utterly empty space, the concept of location implies a concept of space more basic than the fields (about 16, I gather) which occupy it. You can't describe movement without a concept of location.
27. Natural Reality / E. Cosmology / 8. Dark Matter
Dark matter must have mass, to produce gravity, and no electric charge, to not reflect light [New Sci.]
     Full Idea: Whatever dark matter is made of, it must have mass to feel and generate gravity; but no electric charge, so it does not interact with light. The leading candidate has been the weakly interacting massive particle (WIMP), much heavier than a proton.
     From: New Scientist writers (Why the Universe Exists [2017], 08)
     A reaction: Note that it must 'generate' gravity. The idea of a law of gravity which is externally imposed on matter is long dead. Heavy WIMPs have not yet been detected.
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
'Being' and 'oneness' are predicated of everything which exists [Aristotle]
     Full Idea: 'Being' and 'oneness' are predicated of everything which exists.
     From: Aristotle (Topics [c.331 BCE], 121a18)
     A reaction: Is 'oneness' predicated of water? So existence always was a predicate, it seems, until Kant told us it wasn't. That existence is a quantifier, not a predicate, seems to be up for question again these days.