Combining Texts

All the ideas for 'Topics', 'thirty titles (lost)' and 'works'

unexpand these ideas     |    start again     |     specify just one area for these texts


78 ideas

1. Philosophy / F. Analytic Philosophy / 2. Analysis by Division
Begin examination with basics, and subdivide till you can go no further [Aristotle]
     Full Idea: The examination must be carried on and begin from the primary classes and then go on step by step until further division is impossible.
     From: Aristotle (Topics [c.331 BCE], 109b17)
     A reaction: This is a good slogan for the analytic approach to thought. I take Aristotle (or possibly Socrates) to be the father of analysis, not Frege (though see Idea 9840). (He may be thinking of the tableau method of proof).
2. Reason / C. Styles of Reason / 1. Dialectic
Dialectic starts from generally accepted opinions [Aristotle]
     Full Idea: Reasoning is dialectical which reasons from generally accepted opinions.
     From: Aristotle (Topics [c.331 BCE], 100a30)
     A reaction: This is right at the heart of Aristotle's philosophical method, and Greek thinking generally. There are nice modern debates about 'folk' understanding, derived from science (e.g. quantum theory) which suggest that starting from normal views is a bad idea.
2. Reason / D. Definition / 1. Definitions
There can't be one definition of two things, or two definitions of the same thing [Aristotle]
     Full Idea: There cannot possibly be one definition of two things, or two definitions of the same thing.
     From: Aristotle (Topics [c.331 BCE], 154a11)
     A reaction: The second half of this is much bolder and more controversial, and plenty of modern thinkers would flatly reject it. Are definitions contextual, that is, designed for some specific human purpose. Must definitions be of causes?
Definitions are easily destroyed, since they can contain very many assertions [Aristotle]
     Full Idea: A definition is the easiest of all things to destroy; for, since it contains many assertions, the opportunities which it offers are very numerous, and the more abundant the material, the more quickly the reasoning can set to work.
     From: Aristotle (Topics [c.331 BCE], 155a03)
     A reaction: I quote this to show that Aristotle expected many definitions to be very long affairs (maybe even of book length?)
2. Reason / D. Definition / 5. Genus and Differentia
We describe the essence of a particular thing by means of its differentiae [Aristotle]
     Full Idea: We usually isolate the appropriate description of the essence of a particular thing by means of the differentiae which are peculiar to it.
     From: Aristotle (Topics [c.331 BCE], 108b05)
     A reaction: I take this to be important for showing the definition is more than mere categorisation. A good definition homes in the particular, by gradually narrowing down the differentiae.
The differentia indicate the qualities, but not the essence [Aristotle]
     Full Idea: No differentia indicates the essence [ti estin], but rather some quality, such as 'pedestrian' or 'biped'.
     From: Aristotle (Topics [c.331 BCE], 122b17)
     A reaction: We must disentangle this, since essence is what is definable, and definition seems to give us the essence, and yet it appears that definition only requires genus and differentia. Differentiae seem to be both generic and fine-grained. See Idea 12280!
In definitions the first term to be assigned ought to be the genus [Aristotle]
     Full Idea: In definitions the first term to be assigned ought to be the genus.
     From: Aristotle (Topics [c.331 BCE], 132a12)
     A reaction: We mustn't be deluded into thinking that nothing else is required. I take the increasing refinement of differentiae to be where the real action is. The genus gives you 70% of the explanation.
The genera and the differentiae are part of the essence [Aristotle]
     Full Idea: The genera and the differentiae are predicated in the category of essence.
     From: Aristotle (Topics [c.331 BCE], 153a19)
     A reaction: The definition is words, and the essence is real, so our best definition might not fully attain to the essence. Aristotle has us reaching out to the world through our definitions.
Differentia are generic, and belong with genus [Aristotle]
     Full Idea: The differentia, being generic in character, should be ranged with the genus.
     From: Aristotle (Topics [c.331 BCE], 101b18)
     A reaction: This does not mean that naming the differentia amounts to mere classification. I presume we can only state individual differences by using a language which is crammed full of universals.
'Genus' is part of the essence shared among several things [Aristotle]
     Full Idea: A 'genus' is that which is predicated in the category of essence of several things which differ in kind.
     From: Aristotle (Topics [c.331 BCE], 102a32)
     A reaction: Hence a genus is likely to be expressed by a universal, a one-over-many. A particular will be a highly individual collection of various genera, but what ensures the uniqueness of each thing, if they are indiscernible?
2. Reason / D. Definition / 6. Definition by Essence
The definition is peculiar to one thing, not common to many [Aristotle]
     Full Idea: The definition ought to be peculiar to one thing, not common to many.
     From: Aristotle (Topics [c.331 BCE], 149b24)
     A reaction: I take this to be very important, against those who think that definition is no more than mere categorisation. To explain, you must get down to the level of the individual. We must explain that uniquely docile tiger.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
     Full Idea: The notion of a function evolved gradually from wanting to see what curves can be represented as trigonometric series. The study of arbitrary functions led Cantor to the ordinal numbers, which led to set theory.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
     Full Idea: Cantor's Theorem says that for any set x, its power set P(x) has more members than x.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
     Full Idea: Cantor's diagonalisation argument generalises to show that any set has more subsets than it has members.
     From: report of George Cantor (works [1880]) by David Bostock - Philosophy of Mathematics 4.5
     A reaction: Thus three members will generate seven subsets. This means that 'there is no end to the series of cardinal numbers' (Bostock p.106).
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
     Full Idea: Cantor taught that a set is 'a many, which can be thought of as one'. ...After a time the unfortunate beginner student is told that some classes - the singletons - have only a single member. Here is a just cause for student protest, if ever there was one.
     From: report of George Cantor (works [1880]) by David Lewis - Parts of Classes 2.1
     A reaction: There is a parallel question, almost lost in the mists of time, of whether 'one' is a number. 'Zero' is obviously dubious, but if numbers are for counting, that needs units, so the unit is the precondition of counting, not part of it.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
     Full Idea: Cantor's theories exhibited the contradictions others had claimed to derive from the supposition of infinite sets as confusions resulting from the failure to mark the necessary distinctions with sufficient clarity.
     From: report of George Cantor (works [1880]) by Michael Potter - Set Theory and Its Philosophy Intro 1
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
     Full Idea: Cantor discovered that the continuum is the powerset of the integers. While adding or multiplying infinities didn't move up a level of complexity, multiplying a number by itself an infinite number of times did.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
     Full Idea: Cantor first stated the Union Axiom in a letter to Dedekind in 1899. It is nearly too obvious to deserve comment from most commentators. Justifications usually rest on 'limitation of size' or on the 'iterative conception'.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Surely someone can think of some way to challenge it! An opportunity to become notorious, and get invited to conferences.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
     Full Idea: Cantor's definition of a set was a collection of its members into a whole, but within a few years Dedekind had the idea of a set as a container, enclosing its members like a sack.
     From: report of George Cantor (works [1880]) by Oliver,A/Smiley,T - What are Sets and What are they For? Intro
     A reaction: As the article goes on to show, these two view don't seem significantly different until you start to ask about the status of the null set and of singletons. I intuitively vote for Dedekind. Set theory is the study of brackets.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
     Full Idea: Cantor's Theorem (1874) says there are infinite sets that are not enumerable. This is proved by his 1891 'diagonal argument'.
     From: report of George Cantor (works [1880]) by Peter Smith - Intro to Gödel's Theorems 2.3
     A reaction: [Smith summarises the diagonal argument]
5. Theory of Logic / L. Paradox / 2. Aporiai
Puzzles arise when reasoning seems equal on both sides [Aristotle]
     Full Idea: The equality of opposite reasonings is the cause of aporia; for it is when we reason on both [sides of a question] and it appears to us that everything can come about either way, that we are in a state of aporia about which of the two ways to take up.
     From: Aristotle (Topics [c.331 BCE], 145b17), quoted by Vassilis Politis - Aristotle and the Metaphysics 3.1
     A reaction: Other philosophers give up on the subject in this situation, but I love Aristotle because he takes this to be the place where philosophy begins.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
     Full Idea: The problem of Cantor's Paradox is that the power set of the universe has to be both bigger than the universe (by Cantor's theorem) and not bigger (since it is a subset of the universe).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 3
     A reaction: Russell eliminates the 'universe' in his theory of types. I don't see why you can't just say that the members of the set are hypothetical rather than real, and that hypothetically the universe might contain more things than it does.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
     Full Idea: Cantor's Paradox says that the powerset of a set has a cardinal number strictly greater than the original set, but that means that the powerset of the set of all the cardinal numbers is greater than itself.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Friend cites this with the Burali-Forti paradox and the Russell paradox as the best examples of the problems of set theory in the early twentieth century. Did this mean that sets misdescribe reality, or that we had constructed them wrongly?
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
     Full Idea: Cantor believed he had discovered that between the finite and the 'Absolute', which is 'incomprehensible to the human understanding', there is a third category, which he called 'the transfinite'.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.4
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
     Full Idea: In 1878 Cantor published the unexpected result that one can put the points on a plane, or indeed any n-dimensional space, into one-to-one correspondence with the points on a line.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
     Full Idea: Cantor took the ordinal numbers to be primary: in his generalization of the cardinals and ordinals into the transfinite, it is the ordinals that he calls 'numbers'.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind VI
     A reaction: [Tait says Dedekind also favours the ordinals] It is unclear how the matter might be settled. Humans cannot give the cardinality of large groups without counting up through the ordinals. A cardinal gets its meaning from its place in the ordinals?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
     Full Idea: Cantor taught us to regard the totality of natural numbers, which was formerly thought to be infinite, as really finite after all.
     From: report of George Cantor (works [1880]) by John Mayberry - What Required for Foundation for Maths? p.414-2
     A reaction: I presume this is because they are (by definition) countable.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
     Full Idea: Cantor introduced the distinction between cardinal and ordinal numbers.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind Intro
     A reaction: This seems remarkably late for what looks like a very significant clarification. The two concepts coincide in finite cases, but come apart in infinite cases (Tait p.58).
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
     Full Idea: Cantor's work revealed that the notion of an ordinal number is more fundamental than that of a cardinal number.
     From: report of George Cantor (works [1880]) by Michael Dummett - Frege philosophy of mathematics Ch.23
     A reaction: Dummett makes it sound like a proof, which I find hard to believe. Is the notion that I have 'more' sheep than you logically prior to how many sheep we have? If I have one more, that implies the next number, whatever that number may be. Hm.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
     Full Idea: The cardinal number of M is the general idea which, by means of our active faculty of thought, is deduced from the collection M, by abstracting from the nature of its diverse elements and from the order in which they are given.
     From: George Cantor (works [1880]), quoted by Bertrand Russell - The Principles of Mathematics §284
     A reaction: [Russell cites 'Math. Annalen, XLVI, §1'] See Fine 1998 on this.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
     Full Idea: Cantor said he could show that every infinite set of points on the line could be placed into one-to-one correspondence with either the natural numbers or the real numbers - with no intermediate possibilies (the Continuum hypothesis). His proof failed.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
     Full Idea: Cantor's diagonal argument showed that all the infinite decimals between 0 and 1 cannot be written down even in a single never-ending list.
     From: report of George Cantor (works [1880]) by Stephen Read - Thinking About Logic Ch.6
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
     Full Idea: Cantor's theory of Cauchy sequences defines a real number to be associated with an infinite set of infinite sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II.6
     A reaction: This sounds remarkably like the endless decimals we use when we try to write down an actual real number.
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
     Full Idea: Cantor introduced irrationals to play the role of limits of Cauchy sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite 4.2
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
Unit is the starting point of number [Aristotle]
     Full Idea: They say that the unit [monada] is the starting point of number (and the point the starting-point of a line).
     From: Aristotle (Topics [c.331 BCE], 108b30)
     A reaction: Yes, despite Frege's objections in the early part of the 'Grundlagen' (1884). I take arithmetic to be rooted in counting, despite all abstract definitions of number by Frege and Dedekind. Identity gives the unit, which is countable. See also Topics 141b9
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
     Full Idea: From the very nature of an irrational number, it seems necessary to understand the mathematical infinite thoroughly before an adequate theory of irrationals is possible. Infinite classes are obvious in the Dedekind Cut, but have logical difficulties
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II Intro
     A reaction: Almost the whole theory of analysis (calculus) rested on the irrationals, so a theory of the infinite was suddenly (in the 1870s) vital for mathematics. Cantor wasn't just being eccentric or mystical.
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
     Full Idea: Cantor's 1891 diagonal argument revealed there are infinitely many infinite powers. Indeed, it showed more: it shows that given any set there is another of greater power. Hence there is an infinite power strictly greater than that of the set of the reals.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
     Full Idea: What we might call 'Cantor's Thesis' is that there won't be a potential infinity of any sort unless there is an actual infinity of some sort.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: This idea is nicely calculated to stop Aristotle in his tracks.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
     Full Idea: Cantor showed that the complete totality of natural numbers cannot be mapped 1-1 onto the complete totality of the real numbers - so there are different sizes of infinity.
     From: report of George Cantor (works [1880]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.4
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
     Full Idea: Cantor's 'continuum hypothesis' is the assertion that there are no infinite cardinalities strictly between the size of the natural numbers and the size of the real numbers.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Thinking About Mathematics 2.4
     A reaction: The tricky question is whether this hypothesis can be proved.
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
     Full Idea: Cantor's Continuum Hypothesis (CH) says that for every infinite set X of reals there is either a one-to-one correspondence between X and the natural numbers, or between X and the real numbers.
     From: report of George Cantor (works [1880]) by Peter Koellner - On the Question of Absolute Undecidability 1.2
     A reaction: Every single writer I read defines this differently, which drives me crazy, but is also helpfully illuminating. There is a moral there somewhere.
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
     Full Idea: Cantor conjectured that there is no size between those of the naturals and the reals - called the 'continuum hypothesis'. The generalized version says that for no infinite set A is there a set larger than A but smaller than P(A).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: Thus there are gaps between infinite numbers, and the power set is the next size up from any infinity. Much discussion as ensued about whether these two can be proved.
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
     Full Idea: Cantor's Continuum Hypothesis states that there are no sets which are too large for there to be a one-to-one correspondence between the set and the natural numbers, but too small for there to exist a one-to-one correspondence with the real numbers.
     From: report of George Cantor (works [1880]) by Leon Horsten - Philosophy of Mathematics §5.1
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
     Full Idea: Cantor's conjecture (the Continuum Hypothesis) is that there are no sets between N and P(N). The 'generalized' version replaces N with an arbitrary infinite set.
     From: report of George Cantor (works [1880]) by Robert S. Wolf - A Tour through Mathematical Logic 2.2
     A reaction: The initial impression is that there is a single gap in the numbers, like a hole in ozone layer, but the generalised version implies an infinity of gaps. How can there be gaps in the numbers? Weird.
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
     Full Idea: Cantor's Continuum Hypothesis was that there is no cardinal number greater than aleph-null but less than the cardinality of the continuum.
     From: report of George Cantor (works [1880]) by Charles Chihara - A Structural Account of Mathematics 05.1
     A reaction: I have no view on this (have you?), but the proposal that there are gaps in the number sequences has to excite all philosophers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
     Full Idea: Cantor's second innovation was to extend the sequence of ordinal numbers into the transfinite, forming a handy scale for measuring infinite cardinalities.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: Struggling with this. The ordinals seem to locate the cardinals, but in what sense do they 'measure' them?
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
     Full Idea: Cantor's set theory was not of collections in some familiar sense, but of collections that can be counted using the indexes - the finite and transfinite ordinal numbers. ..He treated infinite collections as if they were finite.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
     Full Idea: Cantor's first innovation was to treat cardinality as strictly a matter of one-to-one correspondence, so that the question of whether two infinite sets are or aren't of the same size suddenly makes sense.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: It makes sense, except that all sets which are infinite but countable can be put into one-to-one correspondence with one another. What's that all about, then?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
     Full Idea: Cantor's theorem entails that there are more property extensions than objects. So there are not enough objects in any domain to serve as extensions for that domain. So Frege's view that numbers are objects led to the Caesar problem.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Philosophy of Mathematics 4.6
     A reaction: So the possibility that Caesar might have to be a number arises because otherwise we are threatening to run out of numbers? Is that really the problem?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
     Full Idea: Pure mathematics ...according to my conception is nothing other than pure set theory.
     From: George Cantor (works [1880], I.1), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: [an unpublished paper of 1884] So right at the beginning of set theory this claim was being made, before it was axiomatised, and so on. Zermelo endorsed the view, and it flourished unchallenged until Benacerraf (1965).
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
     Full Idea: Cantor calls mathematics an empirical science in so far as it begins with consideration of things in the external world; on his view, number originates only by abstraction from objects.
     From: report of George Cantor (works [1880]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §21
     A reaction: Frege utterly opposed this view, and he seems to have won the day, but I am rather thrilled to find the great Cantor endorsing my own intuitions on the subject. The difficulty is to explain 'abstraction'.
7. Existence / E. Categories / 3. Proposed Categories
There are ten categories: essence, quantity, quality, relation, place, time, position, state, activity, passivity [Aristotle]
     Full Idea: The four main types of predicates fall into ten categories: essence, quantity, quality, relation, place, time, position, state, activity, passivity.
     From: Aristotle (Topics [c.331 BCE], 103b20)
     A reaction: These are the standard ten categories of Aristotle. He is notable for the divisions not being sharp, and ten being a rough total. He is well aware of the limits of precision in such matters.
8. Modes of Existence / B. Properties / 1. Nature of Properties
An individual property has to exist (in past, present or future) [Aristotle]
     Full Idea: If it does not at present exist, or, if it has not existed in the past, or if it is not going to exist in the future, it will not be a property [idion] at all.
     From: Aristotle (Topics [c.331 BCE], 129a27)
     A reaction: This seems to cramp our style in counterfactual discussion. Can't we even mention an individual property if we believe that it will never exist. Utopian political discussion will have to cease!
8. Modes of Existence / B. Properties / 3. Types of Properties
An 'accident' is something which may possibly either belong or not belong to a thing [Aristotle]
     Full Idea: An 'accident' [sumbebekos] is something which may possibly either belong or not belong to any one and the self-same thing, such as 'sitting posture' or 'whiteness'. This is the best definition, because it tells us the essential meaning of the term itself.
     From: Aristotle (Topics [c.331 BCE], 102b07)
     A reaction: Thus a car could be red, or not red. Accidents are contingent. It does not follow that necessary properties are essential (see Idea 12262). There are accidents [sumbebekos], propria [idion] and essences [to ti en einai].
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Genus gives the essence better than the differentiae do [Aristotle]
     Full Idea: In assigning the essence [ti estin], it is more appropriate to state the genus than the differentiae; for he who describes 'man' as an 'animal' indicates his essence better than he who describes him as 'pedestrian'.
     From: Aristotle (Topics [c.331 BCE], 128a24)
     A reaction: See Idea 12279. This idea is only part of the story. My reading of this is simply that assigning a genus gives more information. We learn more about him when we say he is a man than when we say he is Socrates.
9. Objects / B. Unity of Objects / 2. Substance / c. Types of substance
Speusippus suggested underlying principles for every substance, and ended with a huge list [Speussipus, by Aristotle]
     Full Idea: Speusippus suggested principles for each substance, including principles for numbers, magnitude and the soul. He thus arrived at no mean list of substances.
     From: report of Speussipus (thirty titles (lost) [c.367 BCE]) by Aristotle - Metaphysics 1028b
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
In the case of a house the parts can exist without the whole, so parts are not the whole [Aristotle]
     Full Idea: In the case of a house, where the process of compounding the parts is obvious, though the parts exist, there is no reason why the whole should not be non-existent, and so the parts are not the same as the whole.
     From: Aristotle (Topics [c.331 BCE], 150a19)
     A reaction: Compare buying a piece of furniture, and being surprised to discover, when it is delivered, that it is self-assembly. This idea is a simple refutation of the claims of classical mereology, that wholes are just some parts. Aristotle uses modal claims.
9. Objects / D. Essence of Objects / 3. Individual Essences
Everything that is has one single essence [Aristotle]
     Full Idea: Everything that is has one single essence [en esti to einai].
     From: Aristotle (Topics [c.331 BCE], 141a36)
     A reaction: Does this include vague objects, and abstract 'objects'? Sceptics might ask what grounds this claim. Does Dr Jeckyll have two essences?
9. Objects / D. Essence of Objects / 7. Essence and Necessity / b. Essence not necessities
An 'idion' belongs uniquely to a thing, but is not part of its essence [Aristotle]
     Full Idea: A property [idion] is something which does not show the essence of a thing but belongs to it alone. ...No one calls anything a property which can possibly belong to something else.
     From: Aristotle (Topics [c.331 BCE], 102a18)
     A reaction: [See Charlotte Witt 106 on this] 'Property' is clearly a bad translation for such an individual item. Witt uses 'proprium', which is a necessary but nonessential property of something. Necessity is NOT the hallmark of essence. See Idea 12266.
9. Objects / E. Objects over Time / 11. End of an Object
Destruction is dissolution of essence [Aristotle]
     Full Idea: Destruction is a dissolution of essence.
     From: Aristotle (Topics [c.331 BCE], 153b30)
     A reaction: [plucked from context!] I can't think of a better way to define destruction, in order to distinguish it from damage. A vase is destroyed when its essential function cannot be recovered.
9. Objects / E. Objects over Time / 12. Origin as Essential
If two things are the same, they must have the same source and origin [Aristotle]
     Full Idea: When things are absolutely the same, their coming-into-being and destruction are also the same and so are the agents of their production and destruction.
     From: Aristotle (Topics [c.331 BCE], 152a02)
     A reaction: Thus Queen Elizabeth II has to be the result of that particular birth, and from those particular parents, as Kripke says? The inverse may not be true. Do twins have a single origin? Things that fission and then re-fuse differently? etc
9. Objects / F. Identity among Objects / 9. Sameness
'Same' is mainly for names or definitions, but also for propria, and for accidents [Aristotle]
     Full Idea: 'The same' is employed in several senses: its principal sense is for same name or same definition; a second sense occurs when sameness is applied to a property [idiu]; a third sense is applied to an accident.
     From: Aristotle (Topics [c.331 BCE], 103a24-33)
     A reaction: [compressed] 'Property' is better translated as 'proprium' - a property unique to a particular thing, but not essential - see Idea 12262. Things are made up of essence, propria and accidents, and three ways of being 'the same' are the result.
Two identical things have the same accidents, they are the same; if the accidents differ, they're different [Aristotle]
     Full Idea: If two things are the same then any accident of one must also be an accident of the other, and, if one of them is an accident of something else, so must the other be also. For, if there is any discrepancy on these points, obviously they are not the same.
     From: Aristotle (Topics [c.331 BCE], 152a36)
     A reaction: So what is always called 'Leibniz's Law' should actually be 'Aristotle's Law'! I can't see anything missing from the Aristotle version, but then, since most people think it is pretty obvious, you would expect the great stater of the obvious to get it.
Numerical sameness and generic sameness are not the same [Aristotle]
     Full Idea: Things which are the same specifically or generically are not necessarily the same or cannot possibly be the same numerically.
     From: Aristotle (Topics [c.331 BCE], 152b32)
     A reaction: See also Idea 12266. This looks to me to be a pretty precise anticipation of Peirce's type/token distinction, but without the terminology. It is reassuring that Aristotle spotted it, as that makes it more likely to be a genuine distinction.
10. Modality / A. Necessity / 6. Logical Necessity
Reasoning is when some results follow necessarily from certain claims [Aristotle]
     Full Idea: Reasoning [sullogismos] is a discussion in which, certain things having been laid down, something other than these things necessarily results through them.
     From: Aristotle (Topics [c.331 BCE], 100a25)
     A reaction: This is cited as the standard statement of the nature of logical necessity. One might challenge either the very word 'necessary', or the exact sense of the word employed here. Is it, in fact, metaphysical, or merely analytic?
14. Science / C. Induction / 1. Induction
Induction is the progress from particulars to universals [Aristotle]
     Full Idea: Induction is the progress from particulars to universals; if the skilled pilot is the best pilot and the skilled charioteer the best charioteer, then, in general, the skilled man is the best man in any particular sphere.
     From: Aristotle (Topics [c.331 BCE], 105a15)
     A reaction: It is a bit unclear whether we are deriving universal concepts, or merely general truths. Need general truths be absolute or necessary truths? Presumably occasionally the best person is not the most skilled, as in playing a musical instrument.
14. Science / C. Induction / 3. Limits of Induction
We say 'so in cases of this kind', but how do you decide what is 'of this kind'? [Aristotle]
     Full Idea: When it is necessary to establish the universal, people use the expression 'So in all cases of this kind'; but it is one of the most difficult tasks to define which of the terms proposed are 'of this kind' and which are not.
     From: Aristotle (Topics [c.331 BCE], 157a25)
     A reaction: It is particularly hard if induction is expressed as the search for universals, since the kind presumably is the universal, so the universal must be known before the induction can apply, which really is the most frightful nuisance for truth-seekers.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
     Full Idea: Cantor (in his exploration of infinities) pushed the bounds of conceivability further than anyone before him. To discover what is conceivable, we have to enquire into the concept.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics 6.5
     A reaction: This remark comes during a discussion of Husserl's phenomenology. Intuitionists challenge Cantor's claim, and restrict what is conceivable to what is provable. Does possibility depend on conceivability?
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
     Full Idea: Cantor thought that we abstract a number as something common to all and only those sets any one of which has as many members as any other. ...However one wants to see the logic of the inference. The irony is that set theory lays out this logic.
     From: comment on George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: The logic Hart has in mind is the notion of an equivalence relation between sets. This idea sums up the older and more modern concepts of abstraction, the first as psychological, the second as logical (or trying very hard to be!). Cf Idea 9145.
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
Friendship is preferable to money, since its excess is preferable [Aristotle]
     Full Idea: Friendship is preferable to money; for excess of friendship is preferable to excess of money.
     From: Aristotle (Topics [c.331 BCE], 118b07)
     A reaction: Compare Idea 12276, which gives a different criterion for choosing between virtues. This idea is an interesting qualification of the doctrine of the mean.
Justice and self-control are better than courage, because they are always useful [Aristotle]
     Full Idea: Justice [dikaiosune] and self-control [sophrosune] are preferable to courage, for the first two are always useful, but courage only sometimes.
     From: Aristotle (Topics [c.331 BCE], 117a36)
     A reaction: One could challenge his criterion. What of something which is absolutely vital on occasions, against something which is very mildly useful all the time? You may survive without justice, but not without courage. Compare Idea 12277.
23. Ethics / C. Virtue Theory / 4. External Goods / d. Friendship
We value friendship just for its own sake [Aristotle]
     Full Idea: We value friendship for its own sake, even if we are not likely to get anything else from it.
     From: Aristotle (Topics [c.331 BCE], 117a03)
     A reaction: In 'Ethics' he distinguishes some friendships which don't meet this requirement. Presumably true friendships survive all vicissitudes (except betrayal), but that makes such things fairly rare.
24. Political Theory / A. Basis of a State / 1. A People / a. Human distinctiveness
Man is intrinsically a civilized animal [Aristotle]
     Full Idea: It is an essential [kath' auto] property of man to be 'by nature a civilized animal'.
     From: Aristotle (Topics [c.331 BCE], 128b17)
     A reaction: I take this, along with man being intrinsically rational, to be the foundation of Aristotelian ethics. Given that we are civilized, self-evident criteria emerge for how to be good at it. A good person is, above all, a good citizen.
26. Natural Theory / B. Natural Kinds / 2. Defining Kinds
All water is the same, because of a certain similarity [Aristotle]
     Full Idea: Any water is said to be specifically the same as any other water because it has a certain similarity to it.
     From: Aristotle (Topics [c.331 BCE], 103a20)
     A reaction: (Cf. Idea 8153) It take this to be the hallmark of a natural kind, and we should not lose sight of it in the midst of discussions about rigid designation and essential identity. Tigers are only a natural kind insofar as they are indistinguishable.
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
     Full Idea: Cantor proved that one-dimensional space has exactly the same number of points as does two dimensions, or our familiar three-dimensional space.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]
     Full Idea: Cantor said that only God is absolutely infinite.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: We are used to the austere 'God of the philosophers', but this gives us an even more austere 'God of the mathematicians'.
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
'Being' and 'oneness' are predicated of everything which exists [Aristotle]
     Full Idea: 'Being' and 'oneness' are predicated of everything which exists.
     From: Aristotle (Topics [c.331 BCE], 121a18)
     A reaction: Is 'oneness' predicated of water? So existence always was a predicate, it seems, until Kant told us it wasn't. That existence is a quantifier, not a predicate, seems to be up for question again these days.
28. God / C. Attitudes to God / 5. Atheism
Speusippus said things were governed by some animal force rather than the gods [Speussipus, by Cicero]
     Full Idea: Speusippus, following his uncle Plato, held that all things were governed by some kind of animal force, and tried to eradicate from our minds any notion of the gods.
     From: report of Speussipus (thirty titles (lost) [c.367 BCE]) by M. Tullius Cicero - On the Nature of the Gods ('De natura deorum') I.33