Combining Texts

All the ideas for 'works', 'Letter to Peter Wilhelm Lund' and 'Beginning Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


78 ideas

1. Philosophy / A. Wisdom / 1. Nature of Wisdom
There is practical wisdom (for action), and theoretical wisdom (for deep understanding) [Aristotle, by Whitcomb]
     Full Idea: Aristotle takes wisdom to come in two forms, the practical and the theoretical, the former of which is good judgement about how to act, and the latter of which is deep knowledge or understanding.
     From: report of Aristotle (works [c.330 BCE]) by Dennis Whitcomb - Wisdom Intro
     A reaction: The interesting question is then whether the two are connected. One might be thoroughly 'sensible' about action, without counting as 'wise', which seems to require a broader view of what is being done. Whitcomb endorses Aristotle on this idea.
2. Reason / A. Nature of Reason / 2. Logos
For Aristotle logos is essentially the ability to talk rationally about questions of value [Roochnik on Aristotle]
     Full Idea: For Aristotle logos is the ability to speak rationally about, with the hope of attaining knowledge, questions of value.
     From: comment on Aristotle (works [c.330 BCE]) by David Roochnik - The Tragedy of Reason p.26
2. Reason / A. Nature of Reason / 4. Aims of Reason
Aristotle is the supreme optimist about the ability of logos to explain nature [Roochnik on Aristotle]
     Full Idea: Aristotle is the great theoretician who articulates a vision of a world in which natural and stable structures can be rationally discovered. His is the most optimistic and richest view of the possibilities of logos
     From: comment on Aristotle (works [c.330 BCE]) by David Roochnik - The Tragedy of Reason p.95
2. Reason / D. Definition / 4. Real Definition
Aristotelian definitions aim to give the essential properties of the thing defined [Aristotle, by Quine]
     Full Idea: A real definition, according to the Aristotelian tradition, gives the essence of the kind of thing defined. Man is defined as a rational animal, and thus rationality and animality are of the essence of each of us.
     From: report of Aristotle (works [c.330 BCE]) by Willard Quine - Vagaries of Definition p.51
     A reaction: Compare Idea 4385. Personally I prefer the Aristotelian approach, but we may have to say 'We cannot identify the essence of x, and so x cannot be defined'. Compare 'his mood was hard to define' with 'his mood was hostile'.
2. Reason / D. Definition / 5. Genus and Differentia
Aristotelian definition involves first stating the genus, then the differentia of the thing [Aristotle, by Urmson]
     Full Idea: For Aristotle, to give a definition one must first state the genus and then the differentia of the kind of thing to be defined.
     From: report of Aristotle (works [c.330 BCE]) by J.O. Urmson - Aristotle's Doctrine of the Mean p.157
     A reaction: Presumably a modern definition would just be a list of properties, but Aristotle seeks the substance. How does he define a genus? - by placing it in a further genus?
3. Truth / A. Truth Problems / 8. Subjective Truth
I recognise knowledge, but it is the truth by which I can live and die that really matters [Kierkegaard]
     Full Idea: The thing is to find a truth which is true for me - the idea for which I can live and die. I still recognise an imperative of knowledge, but it must be taken up into my life, which I now recognise as the most important thing.
     From: Søren Kierkegaard (Letter to Peter Wilhelm Lund [1835], J-1A)
     A reaction: A quintessentially existential idea. Note that he still considers objective knowledge to be quite important, but how we act and relate to those ideas is what really matters for us human beings. [SY]
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
'Contradictory' propositions always differ in truth-value [Lemmon]
     Full Idea: Two propositions are 'contradictory' if they are never both true and never both false either, which means that ¬(A↔B) is a tautology.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
That proposition that both P and Q is their 'conjunction', written P∧Q [Lemmon]
     Full Idea: If P and Q are any two propositions, the proposition that both P and Q is called the 'conjunction' of P and Q, and is written P∧Q.
     From: E.J. Lemmon (Beginning Logic [1965], 1.3)
     A reaction: [I use the more fashionable inverted-v '∧', rather than Lemmon's '&', which no longer seems to be used] P∧Q can also be defined as ¬(¬P∨¬Q)
The sign |- may be read as 'therefore' [Lemmon]
     Full Idea: I introduce the sign |- to mean 'we may validly conclude'. To call it the 'assertion sign' is misleading. It may conveniently be read as 'therefore'.
     From: E.J. Lemmon (Beginning Logic [1965], 1.2)
     A reaction: [Actually no gap between the vertical and horizontal strokes of the sign] As well as meaning 'assertion', it may also mean 'it is a theorem that' (with no proof shown).
We write the conditional 'if P (antecedent) then Q (consequent)' as P→Q [Lemmon]
     Full Idea: We write 'if P then Q' as P→Q. This is called a 'conditional', with P as its 'antecedent', and Q as its 'consequent'.
     From: E.J. Lemmon (Beginning Logic [1965], 1.2)
     A reaction: P→Q can also be written as ¬P∨Q.
That proposition that either P or Q is their 'disjunction', written P∨Q [Lemmon]
     Full Idea: If P and Q are any two propositions, the proposition that either P or Q is called the 'disjunction' of P and Q, and is written P∨Q.
     From: E.J. Lemmon (Beginning Logic [1965], 1.3)
     A reaction: This is inclusive-or (meaning 'P, or Q, or both'), and not exlusive-or (Boolean XOR), which means 'P, or Q, but not both'. The ∨ sign is sometimes called 'vel' (Latin).
We write the 'negation' of P (not-P) as ¬ [Lemmon]
     Full Idea: We write 'not-P' as ¬P. This is called the 'negation' of P. The 'double negation' of P (not not-P) would be written as ¬¬P.
     From: E.J. Lemmon (Beginning Logic [1965], 1.2)
     A reaction: Lemmons use of -P is no longer in use for 'not'. A tilde sign (squiggle) is also used for 'not', but some interpreters give that a subtly different meaning (involving vagueness). The sign ¬ is sometimes called 'hook' or 'corner'.
We write 'P if and only if Q' as P↔Q; it is also P iff Q, or (P→Q)∧(Q→P) [Lemmon]
     Full Idea: We write 'P if and only if Q' as P↔Q. It is called the 'biconditional', often abbreviate in writing as 'iff'. It also says that P is both sufficient and necessary for Q, and may be written out in full as (P→Q)∧(Q→P).
     From: E.J. Lemmon (Beginning Logic [1965], 1.4)
     A reaction: If this symbol is found in a sequence, the first move in a proof is to expand it to the full version.
If A and B are 'interderivable' from one another we may write A -||- B [Lemmon]
     Full Idea: If we say that A and B are 'interderivable' from one another (that is, A |- B and B |- A), then we may write A -||- B.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'well-formed formula' follows the rules for variables, ¬, →, ∧, ∨, and ↔ [Lemmon]
     Full Idea: A 'well-formed formula' of the propositional calculus is a sequence of symbols which follows the rules for variables, ¬, →, ∧, ∨, and ↔.
     From: E.J. Lemmon (Beginning Logic [1965], 2.1)
The 'scope' of a connective is the connective, the linked formulae, and the brackets [Lemmon]
     Full Idea: The 'scope' of a connective in a certain formula is the formulae linked by the connective, together with the connective itself and the (theoretically) encircling brackets
     From: E.J. Lemmon (Beginning Logic [1965], 2.1)
A 'substitution-instance' is a wff formed by consistent replacing variables with wffs [Lemmon]
     Full Idea: A 'substitution-instance' is a wff which results by replacing one or more variables throughout with the same wffs (the same wff replacing each variable).
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
A wff is 'inconsistent' if all assignments to variables result in the value F [Lemmon]
     Full Idea: If a well-formed formula of propositional calculus takes the value F for all possible assignments of truth-values to its variables, it is said to be 'inconsistent'.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
'Contrary' propositions are never both true, so that ¬(A∧B) is a tautology [Lemmon]
     Full Idea: If A and B are expressible in propositional calculus notation, they are 'contrary' if they are never both true, which may be tested by the truth-table for ¬(A∧B), which is a tautology if they are contrary.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
Two propositions are 'equivalent' if they mirror one another's truth-value [Lemmon]
     Full Idea: Two propositions are 'equivalent' if whenever A is true B is true, and whenever B is true A is true, in which case A↔B is a tautology.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A wff is 'contingent' if produces at least one T and at least one F [Lemmon]
     Full Idea: If a well-formed formula of propositional calculus takes at least one T and at least one F for all the assignments of truth-values to its variables, it is said to be 'contingent'.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
'Subcontrary' propositions are never both false, so that A∨B is a tautology [Lemmon]
     Full Idea: If A and B are expressible in propositional calculus notation, they are 'subcontrary' if they are never both false, which may be tested by the truth-table for A∨B, which is a tautology if they are subcontrary.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A 'implies' B if B is true whenever A is true (so that A→B is tautologous) [Lemmon]
     Full Idea: One proposition A 'implies' a proposition B if whenever A is true B is true (but not necessarily conversely), which is only the case if A→B is tautologous. Hence B 'is implied' by A.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A wff is a 'tautology' if all assignments to variables result in the value T [Lemmon]
     Full Idea: If a well-formed formula of propositional calculus takes the value T for all possible assignments of truth-values to its variables, it is said to be a 'tautology'.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A 'theorem' is the conclusion of a provable sequent with zero assumptions [Lemmon]
     Full Idea: A 'theorem' of logic is the conclusion of a provable sequent in which the number of assumptions is zero.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: This is what Quine and others call a 'logical truth'.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
DN: Given A, we may derive ¬¬A [Lemmon]
     Full Idea: Double Negation (DN): Given A, we may derive ¬¬A as a conclusion, and vice versa. The conclusion depends on the assumptions of the premiss.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
A: we may assume any proposition at any stage [Lemmon]
     Full Idea: Assumptions (A): any proposition may be introduced at any stage of a proof.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
∧E: Given A∧B, we may derive either A or B separately [Lemmon]
     Full Idea: And-Elimination (∧E): Given A∧B, we may derive either A or B separately. The conclusions will depend on the assumptions of the premiss.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
RAA: If assuming A will prove B∧¬B, then derive ¬A [Lemmon]
     Full Idea: Reduction ad Absurdum (RAA): Given a proof of B∧¬B from A as assumption, we may derive ¬A as conclusion, depending on the remaining assumptions (if any).
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
MTT: Given ¬B and A→B, we derive ¬A [Lemmon]
     Full Idea: Modus Tollendo Tollens (MTT): Given ¬B and A→B, we derive ¬A as a conclusion. ¬A depends on any assumptions that have been made
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
∨I: Given either A or B separately, we may derive A∨B [Lemmon]
     Full Idea: Or-Introduction (∨I): Given either A or B separately, we may derive A∨B as conclusion. This depends on the assumption of the premisses.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
∨E: Derive C from A∨B, if C can be derived both from A and from B [Lemmon]
     Full Idea: Or-Elimination (∨E): Given A∨B, we may derive C if it is proved from A as assumption and from B as assumption. This will also depend on prior assumptions.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
∧I: Given A and B, we may derive A∧B [Lemmon]
     Full Idea: And-Introduction (&I): Given A and B, we may derive A∧B as conclusion. This depends on their previous assumptions.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
CP: Given a proof of B from A as assumption, we may derive A→B [Lemmon]
     Full Idea: Conditional Proof (CP): Given a proof of B from A as assumption, we may derive A→B as conclusion, on the remaining assumptions (if any).
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
MPP: Given A and A→B, we may derive B [Lemmon]
     Full Idea: Modus Ponendo Ponens (MPP): Given A and A→B, we may derive B as a conclusion. B will rest on any assumptions that have been made.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Modus tollendo ponens' (MTP) says ¬P, P ∨ Q |- Q [Lemmon]
     Full Idea: 'Modus tollendo ponens' (MTP) says that if a disjunction holds and also the negation of one of its disjuncts, then the other disjunct holds. Thus ¬P, P ∨ Q |- Q may be introduced as a theorem.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: Unlike Modus Ponens and Modus Tollens, this is a derived rule.
'Modus ponendo tollens' (MPT) says P, ¬(P ∧ Q) |- ¬Q [Lemmon]
     Full Idea: 'Modus ponendo tollens' (MPT) says that if the negation of a conjunction holds and also one of its conjuncts, then the negation of the other conjunct holds. Thus P, ¬(P ∧ Q) |- ¬Q may be introduced as a theorem.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: Unlike Modus Ponens and Modus Tollens, this is a derived rule.
We can change conditionals into negated conjunctions with P→Q -||- ¬(P ∧ ¬Q) [Lemmon]
     Full Idea: The proof that P→Q -||- ¬(P ∧ ¬Q) is useful for enabling us to change conditionals into negated conjunctions
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
We can change conditionals into disjunctions with P→Q -||- ¬P ∨ Q [Lemmon]
     Full Idea: The proof that P→Q -||- ¬P ∨ Q is useful for enabling us to change conditionals into disjunctions.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
De Morgan's Laws make negated conjunctions/disjunctions into non-negated disjunctions/conjunctions [Lemmon]
     Full Idea: The forms of De Morgan's Laws [P∨Q -||- ¬(¬P ∧ ¬Q); ¬(P∨Q) -||- ¬P ∧ ¬Q; ¬(P∧Q) -||- ¬P ∨ ¬Q); P∧Q -||- ¬(¬P∨¬Q)] transform negated conjunctions and disjunctions into non-negated disjunctions and conjunctions respectively.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
The Distributive Laws can rearrange a pair of conjunctions or disjunctions [Lemmon]
     Full Idea: The Distributive Laws say that P ∧ (Q∨R) -||- (P∧Q) ∨ (P∧R), and that P ∨ (Q∨R) -||- (P∨Q) ∧ (P∨R)
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
We can change conjunctions into negated conditionals with P→Q -||- ¬(P → ¬Q) [Lemmon]
     Full Idea: The proof that P∧Q -||- ¬(P → ¬Q) is useful for enabling us to change conjunctions into negated conditionals.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth-tables are good for showing invalidity [Lemmon]
     Full Idea: The truth-table approach enables us to show the invalidity of argument-patterns, as well as their validity.
     From: E.J. Lemmon (Beginning Logic [1965], 2.4)
A truth-table test is entirely mechanical, but this won't work for more complex logic [Lemmon]
     Full Idea: A truth-table test is entirely mechanical, ..and in propositional logic we can even generate proofs mechanically for tautological sequences, ..but this mechanical approach breaks down with predicate calculus, and proof-discovery is an imaginative process.
     From: E.J. Lemmon (Beginning Logic [1965], 2.5)
4. Formal Logic / B. Propositional Logic PL / 4. Soundness of PL
If any of the nine rules of propositional logic are applied to tautologies, the result is a tautology [Lemmon]
     Full Idea: If any application of the nine derivation rules of propositional logic is made on tautologous sequents, we have demonstrated that the result is always a tautologous sequent. Thus the system is consistent.
     From: E.J. Lemmon (Beginning Logic [1965], 2.4)
     A reaction: The term 'sound' tends to be used now, rather than 'consistent'. See Lemmon for the proofs of each of the nine rules.
4. Formal Logic / B. Propositional Logic PL / 5. Completeness of PL
Propositional logic is complete, since all of its tautologous sequents are derivable [Lemmon]
     Full Idea: A logical system is complete is all expressions of a specified kind are derivable in it. If we specify tautologous sequent-expressions, then propositional logic is complete, because we can show that all tautologous sequents are derivable.
     From: E.J. Lemmon (Beginning Logic [1965], 2.5)
     A reaction: [See Lemmon 2.5 for details of the proofs]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / a. Symbols of PC
Write '(∀x)(...)' to mean 'take any x: then...', and '(∃x)(...)' to mean 'there is an x such that....' [Lemmon]
     Full Idea: Just as '(∀x)(...)' is to mean 'take any x: then....', so we write '(∃x)(...)' to mean 'there is an x such that....'
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
     A reaction: [Actually Lemmon gives the universal quantifier symbol as '(x)', but the inverted A ('∀') seems to have replaced it these days]
'Gm' says m has property G, and 'Pmn' says m has relation P to n [Lemmon]
     Full Idea: A predicate letter followed by one name expresses a property ('Gm'), and a predicate-letter followed by two names expresses a relation ('Pmn'). We could write 'Pmno' for a complex relation like betweenness.
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
The 'symbols' are bracket, connective, term, variable, predicate letter, reverse-E [Lemmon]
     Full Idea: I define a 'symbol' (of the predicate calculus) as either a bracket or a logical connective or a term or an individual variable or a predicate-letter or reverse-E (∃).
     From: E.J. Lemmon (Beginning Logic [1965], 4.1)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / b. Terminology of PC
Our notation uses 'predicate-letters' (for 'properties'), 'variables', 'proper names', 'connectives' and 'quantifiers' [Lemmon]
     Full Idea: Quantifier-notation might be thus: first, render into sentences about 'properties', and use 'predicate-letters' for them; second, introduce 'variables'; third, introduce propositional logic 'connectives' and 'quantifiers'. Plus letters for 'proper names'.
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
Universal Elimination (UE) lets us infer that an object has F, from all things having F [Lemmon]
     Full Idea: Our rule of universal quantifier elimination (UE) lets us infer that any particular object has F from the premiss that all things have F. It is a natural extension of &E (and-elimination), as universal propositions generally affirm a complex conjunction.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
With finite named objects, we can generalise with &-Intro, but otherwise we need ∀-Intro [Lemmon]
     Full Idea: If there are just three objects and each has F, then by an extension of &I we are sure everything has F. This is of no avail, however, if our universe is infinitely large or if not all objects have names. We need a new device, Universal Introduction, UI.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
UE all-to-one; UI one-to-all; EI arbitrary-to-one; EE proof-to-one [Lemmon]
     Full Idea: Univ Elim UE - if everything is F, then something is F; Univ Intro UI - if an arbitrary thing is F, everything is F; Exist Intro EI - if an arbitrary thing is F, something is F; Exist Elim EE - if a proof needed an object, there is one.
     From: E.J. Lemmon (Beginning Logic [1965], 3.3)
     A reaction: [My summary of Lemmon's four main rules for predicate calculus] This is the natural deduction approach, of trying to present the logic entirely in terms of introduction and elimination rules. See Bostock on that.
Predicate logic uses propositional connectives and variables, plus new introduction and elimination rules [Lemmon]
     Full Idea: In predicate calculus we take over the propositional connectives and propositional variables - but we need additional rules for handling quantifiers: four rules, an introduction and elimination rule for the universal and existential quantifiers.
     From: E.J. Lemmon (Beginning Logic [1965])
     A reaction: This is Lemmon's natural deduction approach (invented by Gentzen), which is largely built on introduction and elimination rules.
Universal elimination if you start with the universal, introduction if you want to end with it [Lemmon]
     Full Idea: The elimination rule for the universal quantifier concerns the use of a universal proposition as a premiss to establish some conclusion, whilst the introduction rule concerns what is required by way of a premiss for a universal proposition as conclusion.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
     A reaction: So if you start with the universal, you need to eliminate it, and if you start without it you need to introduce it.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
If there is a finite domain and all objects have names, complex conjunctions can replace universal quantifiers [Lemmon]
     Full Idea: If all objects in a given universe had names which we knew and there were only finitely many of them, then we could always replace a universal proposition about that universe by a complex conjunction.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
'Some Frenchmen are generous' is rendered by (∃x)(Fx→Gx), and not with the conditional → [Lemmon]
     Full Idea: It is a common mistake to render 'some Frenchmen are generous' by (∃x)(Fx→Gx) rather than the correct (∃x)(Fx&Gx). 'All Frenchmen are generous' is properly rendered by a conditional, and true if there are no Frenchmen.
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
     A reaction: The existential quantifier implies the existence of an x, but the universal quantifier does not.
4. Formal Logic / G. Formal Mereology / 1. Mereology
Aristotle relativises the notion of wholeness to different measures [Aristotle, by Koslicki]
     Full Idea: Aristotle proposes to relativise unity and plurality, so that a single object can be both one (indivisible) and many (divisible) simultaneously, without contradiction, relative to different measures. Wholeness has degrees, with the strength of the unity.
     From: report of Aristotle (works [c.330 BCE]) by Kathrin Koslicki - The Structure of Objects 7.2.12
     A reaction: [see Koslicki's account of Aristotle for details] As always, the Aristotelian approach looks by far the most promising. Simplistic mechanical accounts of how parts make wholes aren't going to work. We must include the conventional and conceptual bit.
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
The paradoxes of material implication are P |- Q → P, and ¬P |- P → Q [Lemmon]
     Full Idea: The paradoxes of material implication are P |- Q → P, and ¬P |- P → Q. That is, since Napoleon was French, then if the moon is blue then Napoleon was French; and since Napoleon was not Chinese, then if Napoleon was Chinese, the moon is blue.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: This is why the symbol → does not really mean the 'if...then' of ordinary English. Russell named it 'material implication' to show that it was a distinctively logical operator.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
For Aristotle, the subject-predicate structure of Greek reflected a substance-accident structure of reality [Aristotle, by O'Grady]
     Full Idea: Aristotle apparently believed that the subject-predicate structure of Greek reflected the substance-accident nature of reality.
     From: report of Aristotle (works [c.330 BCE]) by Paul O'Grady - Relativism Ch.4
     A reaction: We need not assume that Aristotle is wrong. It is a chicken-and-egg. There is something obvious about subject-predicate language, if one assumes that unified objects are part of nature, and not just conventional.
9. Objects / C. Structure of Objects / 2. Hylomorphism / a. Hylomorphism
The unmoved mover and the soul show Aristotelian form as the ultimate mereological atom [Aristotle, by Koslicki]
     Full Idea: Aristotle's discussion of the unmoved mover and of the soul confirms the suspicion that form, when it is not thought of as the object represented in a definition, plays the role of the ultimate mereological atom within his system.
     From: report of Aristotle (works [c.330 BCE]) by Kathrin Koslicki - The Structure of Objects 6.6
     A reaction: Aristotle is concerned with which things are 'divisible', and he cites these two examples as indivisible, but they may be too unusual to offer an actual theory of how Aristotle builds up wholes from atoms. He denies atoms in matter.
9. Objects / C. Structure of Objects / 2. Hylomorphism / d. Form as unifier
The 'form' is the recipe for building wholes of a particular kind [Aristotle, by Koslicki]
     Full Idea: Thus in Aristotle we may think of an object's formal components as a sort of recipe for how to build wholes of that particular kind.
     From: report of Aristotle (works [c.330 BCE]) by Kathrin Koslicki - The Structure of Objects 7.2.5
     A reaction: In the elusive business of pinning down what Aristotle means by the crucial idea of 'form', this analogy strikes me as being quite illuminating. It would fit DNA in living things, and the design of an artifact.
11. Knowledge Aims / A. Knowledge / 1. Knowledge
For Aristotle, knowledge is of causes, and is theoretical, practical or productive [Aristotle, by Code]
     Full Idea: Aristotle thinks that in general we have knowledge or understanding when we grasp causes, and he distinguishes three fundamental types of knowledge - theoretical, practical and productive.
     From: report of Aristotle (works [c.330 BCE]) by Alan D. Code - Aristotle
     A reaction: Productive knowledge we tend to label as 'knowing how'. The centrality of causes for knowledge would get Aristotle nowadays labelled as a 'naturalist'. It is hard to disagree with his three types, though they may overlap.
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
The notion of a priori truth is absent in Aristotle [Aristotle, by Politis]
     Full Idea: The notion of a priori truth is conspicuously absent in Aristotle.
     From: report of Aristotle (works [c.330 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 1.5
     A reaction: Cf. Idea 11240.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Aristotle is a rationalist, but reason is slowly acquired through perception and experience [Aristotle, by Frede,M]
     Full Idea: Aristotle is a rationalist …but reason for him is a disposition which we only acquire over time. Its acquisition is made possible primarily by perception and experience.
     From: report of Aristotle (works [c.330 BCE]) by Michael Frede - Aristotle's Rationalism p.173
     A reaction: I would describe this process as the gradual acquisition of the skill of objectivity, which needs the right knowledge and concepts to evaluate new experiences.
12. Knowledge Sources / E. Direct Knowledge / 2. Intuition
Aristotle wants to fit common intuitions, and therefore uses language as a guide [Aristotle, by Gill,ML]
     Full Idea: Since Aristotle generally prefers a metaphysical theory that accords with common intuitions, he frequently relies on facts about language to guide his metaphysical claims.
     From: report of Aristotle (works [c.330 BCE]) by Mary Louise Gill - Aristotle on Substance Ch.5
     A reaction: I approve of his procedure. I take intuition to be largely rational justifications too complex for us to enunciate fully, and language embodies folk intuitions in its concepts (especially if the concepts occur in many languages).
14. Science / B. Scientific Theories / 1. Scientific Theory
Plato says sciences are unified around Forms; Aristotle says they're unified around substance [Aristotle, by Moravcsik]
     Full Idea: Plato's unity of science principle states that all - legitimate - sciences are ultimately about the Forms. Aristotle's principle states that all sciences must be, ultimately, about substances, or aspects of substances.
     From: report of Aristotle (works [c.330 BCE], 1) by Julius Moravcsik - Aristotle on Adequate Explanations 1
14. Science / D. Explanation / 1. Explanation / a. Explanation
Aristotelian explanations are facts, while modern explanations depend on human conceptions [Aristotle, by Politis]
     Full Idea: For Aristotle things which explain (the explanantia) are facts, which should not be associated with the modern view that says explanations are dependent on how we conceive and describe the world (where causes are independent of us).
     From: report of Aristotle (works [c.330 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 2.1
     A reaction: There must be some room in modern thought for the Aristotelian view, if some sort of robust scientific realism is being maintained against the highly linguistic view of philosophy found in the twentieth century.
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Aristotle's standard analysis of species and genus involves specifying things in terms of something more general [Aristotle, by Benardete,JA]
     Full Idea: The standard Aristotelian doctrine of species and genus in the theory of anything whatever involves specifying what the thing is in terms of something more general.
     From: report of Aristotle (works [c.330 BCE]) by José A. Benardete - Metaphysics: the logical approach Ch.10
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Aristotle regularly says that essential properties explain other significant properties [Aristotle, by Kung]
     Full Idea: The view that essential properties are those in virtue of which other significant properties of the subjects under investigation can be explained is encountered repeatedly in Aristotle's work.
     From: report of Aristotle (works [c.330 BCE]) by Joan Kung - Aristotle on Essence and Explanation IV
     A reaction: What does 'significant' mean here? I take it that the significant properties are the ones which explain the role, function and powers of the object.
18. Thought / A. Modes of Thought / 5. Rationality / c. Animal rationality
Aristotle and the Stoics denied rationality to animals, while Platonists affirmed it [Aristotle, by Sorabji]
     Full Idea: Aristotle, and also the Stoics, denied rationality to animals. …The Platonists, the Pythagoreans, and some more independent Aristotelians, did grant reason and intellect to animals.
     From: report of Aristotle (works [c.330 BCE]) by Richard Sorabji - Rationality 'Denial'
     A reaction: This is not the same as affirming or denying their consciousness. The debate depends on how rationality is conceived.
19. Language / E. Analyticity / 2. Analytic Truths
The notion of analytic truth is absent in Aristotle [Aristotle, by Politis]
     Full Idea: The notion of analytic truth is conspicuously absent in Aristotle.
     From: report of Aristotle (works [c.330 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 1.5
     A reaction: Cf. Idea 11239.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
Aristotle never actually says that man is a rational animal [Aristotle, by Fogelin]
     Full Idea: To the best of my knowledge (and somewhat to my surprise), Aristotle never actually says that man is a rational animal; however, he all but says it.
     From: report of Aristotle (works [c.330 BCE]) by Robert Fogelin - Walking the Tightrope of Reason Ch.1
     A reaction: When I read this I thought that this database would prove Fogelin wrong, but it actually supports him, as I can't find it in Aristotle either. Descartes refers to it in Med.Two. In Idea 5133 Aristotle does say that man is a 'social being'. But 22586!
25. Social Practice / E. Policies / 5. Education / a. Aims of education
It is the mark of an educated mind to be able to entertain an idea without accepting it [Aristotle]
     Full Idea: It is the mark of an educated mind to be able to entertain an idea without accepting it.
     From: Aristotle (works [c.330 BCE])
     A reaction: The epigraph on a David Chalmers website. A wonderful remark, and it should be on the wall of every beginners' philosophy class. However, while it is in the spirit of Aristotle, it appears to be a misattribution with no ancient provenance.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Aristotle said the educated were superior to the uneducated as the living are to the dead [Aristotle, by Diog. Laertius]
     Full Idea: Aristotle was asked how much educated men were superior to those uneducated; "As much," he said, "as the living are to the dead."
     From: report of Aristotle (works [c.330 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 05.1.11
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
There are potential infinities (never running out), but actual infinity is incoherent [Aristotle, by Friend]
     Full Idea: Aristotle developed his own distinction between potential infinity (never running out) and actual infinity (there being a collection of an actual infinite number of things, such as places, times, objects). He decided that actual infinity was incoherent.
     From: report of Aristotle (works [c.330 BCE]) by Michèle Friend - Introducing the Philosophy of Mathematics 1.3
     A reaction: Friend argues, plausibly, that this won't do, since potential infinity doesn't make much sense if there is not an actual infinity of things to supply the demand. It seems to just illustrate how boggling and uncongenial infinity was to Aristotle.
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / a. Greek matter
Aristotle's matter can become any other kind of matter [Aristotle, by Wiggins]
     Full Idea: Aristotle's conception of matter permits any kind of matter to become any other kind of matter.
     From: report of Aristotle (works [c.330 BCE]) by David Wiggins - Substance 4.11.2
     A reaction: This is obviously crucial background information when we read Aristotle on matter. Our 92+ elements, and fixed fundamental particles, gives a quite different picture. Aristotle would discuss form and matter quite differently now.
29. Religion / A. Polytheistic Religion / 2. Greek Polytheism
The concepts of gods arose from observing the soul, and the cosmos [Aristotle, by Sext.Empiricus]
     Full Idea: Aristotle said that the conception of gods arose among mankind from two originating causes, namely from events which concern the soul and from celestial phenomena.
     From: report of Aristotle (works [c.330 BCE], Frag 10) by Sextus Empiricus - Against the Physicists (two books) I.20
     A reaction: The cosmos suggests order, and possible creation. What do events of the soul suggest? It doesn't seem to be its non-physical nature, because Aristotle is more of a functionalist. Puzzling. (It says later that gods are like the soul).