Combining Texts

All the ideas for 'Topics', 'Natural Theology' and 'Philosophy of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


88 ideas

1. Philosophy / F. Analytic Philosophy / 2. Analysis by Division
Begin examination with basics, and subdivide till you can go no further [Aristotle]
     Full Idea: The examination must be carried on and begin from the primary classes and then go on step by step until further division is impossible.
     From: Aristotle (Topics [c.331 BCE], 109b17)
     A reaction: This is a good slogan for the analytic approach to thought. I take Aristotle (or possibly Socrates) to be the father of analysis, not Frege (though see Idea 9840). (He may be thinking of the tableau method of proof).
2. Reason / C. Styles of Reason / 1. Dialectic
Dialectic starts from generally accepted opinions [Aristotle]
     Full Idea: Reasoning is dialectical which reasons from generally accepted opinions.
     From: Aristotle (Topics [c.331 BCE], 100a30)
     A reaction: This is right at the heart of Aristotle's philosophical method, and Greek thinking generally. There are nice modern debates about 'folk' understanding, derived from science (e.g. quantum theory) which suggest that starting from normal views is a bad idea.
2. Reason / D. Definition / 1. Definitions
There can't be one definition of two things, or two definitions of the same thing [Aristotle]
     Full Idea: There cannot possibly be one definition of two things, or two definitions of the same thing.
     From: Aristotle (Topics [c.331 BCE], 154a11)
     A reaction: The second half of this is much bolder and more controversial, and plenty of modern thinkers would flatly reject it. Are definitions contextual, that is, designed for some specific human purpose. Must definitions be of causes?
Definitions are easily destroyed, since they can contain very many assertions [Aristotle]
     Full Idea: A definition is the easiest of all things to destroy; for, since it contains many assertions, the opportunities which it offers are very numerous, and the more abundant the material, the more quickly the reasoning can set to work.
     From: Aristotle (Topics [c.331 BCE], 155a03)
     A reaction: I quote this to show that Aristotle expected many definitions to be very long affairs (maybe even of book length?)
2. Reason / D. Definition / 5. Genus and Differentia
Differentia are generic, and belong with genus [Aristotle]
     Full Idea: The differentia, being generic in character, should be ranged with the genus.
     From: Aristotle (Topics [c.331 BCE], 101b18)
     A reaction: This does not mean that naming the differentia amounts to mere classification. I presume we can only state individual differences by using a language which is crammed full of universals.
'Genus' is part of the essence shared among several things [Aristotle]
     Full Idea: A 'genus' is that which is predicated in the category of essence of several things which differ in kind.
     From: Aristotle (Topics [c.331 BCE], 102a32)
     A reaction: Hence a genus is likely to be expressed by a universal, a one-over-many. A particular will be a highly individual collection of various genera, but what ensures the uniqueness of each thing, if they are indiscernible?
We describe the essence of a particular thing by means of its differentiae [Aristotle]
     Full Idea: We usually isolate the appropriate description of the essence of a particular thing by means of the differentiae which are peculiar to it.
     From: Aristotle (Topics [c.331 BCE], 108b05)
     A reaction: I take this to be important for showing the definition is more than mere categorisation. A good definition homes in the particular, by gradually narrowing down the differentiae.
The differentia indicate the qualities, but not the essence [Aristotle]
     Full Idea: No differentia indicates the essence [ti estin], but rather some quality, such as 'pedestrian' or 'biped'.
     From: Aristotle (Topics [c.331 BCE], 122b17)
     A reaction: We must disentangle this, since essence is what is definable, and definition seems to give us the essence, and yet it appears that definition only requires genus and differentia. Differentiae seem to be both generic and fine-grained. See Idea 12280!
In definitions the first term to be assigned ought to be the genus [Aristotle]
     Full Idea: In definitions the first term to be assigned ought to be the genus.
     From: Aristotle (Topics [c.331 BCE], 132a12)
     A reaction: We mustn't be deluded into thinking that nothing else is required. I take the increasing refinement of differentiae to be where the real action is. The genus gives you 70% of the explanation.
The genera and the differentiae are part of the essence [Aristotle]
     Full Idea: The genera and the differentiae are predicated in the category of essence.
     From: Aristotle (Topics [c.331 BCE], 153a19)
     A reaction: The definition is words, and the essence is real, so our best definition might not fully attain to the essence. Aristotle has us reaching out to the world through our definitions.
2. Reason / D. Definition / 6. Definition by Essence
The definition is peculiar to one thing, not common to many [Aristotle]
     Full Idea: The definition ought to be peculiar to one thing, not common to many.
     From: Aristotle (Topics [c.331 BCE], 149b24)
     A reaction: I take this to be very important, against those who think that definition is no more than mere categorisation. To explain, you must get down to the level of the individual. We must explain that uniquely docile tiger.
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions are wrong, because they change the set that is being defined? [Bostock]
     Full Idea: Poincaré suggested that what is wrong with an impredicative definition is that it allows the set defined to alter its composition as more sets are added to the theory.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Classical interdefinitions of logical constants and quantifiers is impossible in intuitionism [Bostock]
     Full Idea: None of the classical ways of defining one logical constant in terms of others is available in intuitionist logic (and this includes the two quantifiers).
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
There is no single agreed structure for set theory [Bostock]
     Full Idea: There is so far no agreed set of axioms for set theory which is categorical, i.e. which does pick just one structure.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: This contrasts with Peano Arithmetic, which is categorical in its second-order version.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A 'proper class' cannot be a member of anything [Bostock]
     Full Idea: A 'proper class' cannot be a member of anything, neither of a set nor of another proper class.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We could add axioms to make sets either as small or as large as possible [Bostock]
     Full Idea: We could add the axiom that all sets are constructible (V = L), making the universe of sets as small as possible, or add the axiom that there is a supercompact cardinal (SC), making the universe as large as we no know how to.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: Bostock says most mathematicians reject the first option, and are undecided about the second option.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice relies on reference to sets that we are unable to describe [Bostock]
     Full Idea: The usual accounts of ZF are not restricted to subsets that we can describe, and that is what justifies the axiom of choice.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4 n36)
     A reaction: This contrasts interestingly with predicativism, which says we can only discuss things which we can describe or define. Something like verificationism hovers in the background.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Replacement enforces a 'limitation of size' test for the existence of sets [Bostock]
     Full Idea: The Axiom of Replacement (or the Axiom of Subsets, 'Aussonderung', Fraenkel 1922) in effect enforces the idea that 'limitation of size' is a crucial factor when deciding whether a proposed set or does not not exist.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is not decidable: there is no test of whether any formula is valid [Bostock]
     Full Idea: First-order logic is not decidable. That is, there is no test which can be applied to any arbitrary formula of that logic and which will tell one whether the formula is or is not valid (as proved by Church in 1936).
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
The completeness of first-order logic implies its compactness [Bostock]
     Full Idea: From the fact that the usual rules for first-level logic are complete (as proved by Gödel 1930), it follows that this logic is 'compact'.
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
     A reaction: The point is that the completeness requires finite proofs.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Substitutional quantification is just standard if all objects in the domain have a name [Bostock]
     Full Idea: Substitutional quantification and quantification understood in the usual 'ontological' way will coincide when every object in the (ontological) domain has a name.
     From: David Bostock (Philosophy of Mathematics [2009], 7.3 n23)
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
The Deduction Theorem is what licenses a system of natural deduction [Bostock]
     Full Idea: The Deduction Theorem is what licenses a system of 'natural deduction' in the first place.
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
5. Theory of Logic / L. Paradox / 2. Aporiai
Puzzles arise when reasoning seems equal on both sides [Aristotle]
     Full Idea: The equality of opposite reasonings is the cause of aporia; for it is when we reason on both [sides of a question] and it appears to us that everything can come about either way, that we are in a state of aporia about which of the two ways to take up.
     From: Aristotle (Topics [c.331 BCE], 145b17), quoted by Vassilis Politis - Aristotle and the Metaphysics 3.1
     A reaction: Other philosophers give up on the subject in this situation, but I love Aristotle because he takes this to be the place where philosophy begins.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox considers the meaning of 'The least number not named by this name' [Bostock]
     Full Idea: Berry's Paradox can be put in this form, by considering the alleged name 'The least number not named by this name'.
     From: David Bostock (Philosophy of Mathematics [2009], 8.1)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Each addition changes the ordinality but not the cardinality, prior to aleph-1 [Bostock]
     Full Idea: If you add to the ordinals you produce many different ordinals, each measuring the length of the sequence of ordinals less than it. They each have cardinality aleph-0. The cardinality eventually increases, but we can't say where this break comes.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
ω + 1 is a new ordinal, but its cardinality is unchanged [Bostock]
     Full Idea: If we add ω onto the end of 0,1,2,3,4..., it then has a different length, of ω+1. It has a different ordinal (since it can't be matched with its first part), but the same cardinal (since adding 1 makes no difference).
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: [compressed] The ordinals and cardinals coincide up to ω, but this is the point at which they come apart.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
A cardinal is the earliest ordinal that has that number of predecessors [Bostock]
     Full Idea: It is the usual procedure these days to identify a cardinal number with the earliest ordinal number that has that number of predecessors.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: This sounds circular, since you need to know the cardinal in order to decide which ordinal is the one you want, but, hey, what do I know?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Aleph-1 is the first ordinal that exceeds aleph-0 [Bostock]
     Full Idea: The cardinal aleph-1 is identified with the first ordinal to have more than aleph-0 members, and so on.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
     A reaction: That is, the succeeding infinite ordinals all have the same cardinal number of members (aleph-0), until the new total is triggered (at the number of the reals). This is Continuum Hypothesis territory.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Instead of by cuts or series convergence, real numbers could be defined by axioms [Bostock]
     Full Idea: In addition to cuts, or converging series, Cantor suggests we can simply lay down a set of axioms for the real numbers, and this can be done without any explicit mention of the rational numbers [note: the axioms are those for a complete ordered field].
     From: David Bostock (Philosophy of Mathematics [2009], 4.4)
     A reaction: It is interesting when axioms are best, and when not. Set theory depends entirely on axioms. Horsten and Halbach are now exploring treating truth as axiomatic. You don't give the 'nature' of the thing - just rules for its operation.
The number of reals is the number of subsets of the natural numbers [Bostock]
     Full Idea: It is not difficult to show that the number of the real numbers is the same as the number of all the subsets of the natural numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: The Continuum Hypothesis is that this is the next infinite number after the number of natural numbers. Why can't there be a number which is 'most' of the subsets of the natural numbers?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
For Eudoxus cuts in rationals are unique, but not every cut makes a real number [Bostock]
     Full Idea: As Eudoxus claimed, two distinct real numbers cannot both make the same cut in the rationals, for any two real numbers must be separated by a rational number. He did not say, though, that for every such cut there is a real number that makes it.
     From: David Bostock (Philosophy of Mathematics [2009], 4.4)
     A reaction: This is in Bostock's discussion of Dedekind's cuts. It seems that every cut is guaranteed to produce a real. Fine challenges the later assumption.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
Unit is the starting point of number [Aristotle]
     Full Idea: They say that the unit [monada] is the starting point of number (and the point the starting-point of a line).
     From: Aristotle (Topics [c.331 BCE], 108b30)
     A reaction: Yes, despite Frege's objections in the early part of the 'Grundlagen' (1884). I take arithmetic to be rooted in counting, despite all abstract definitions of number by Frege and Dedekind. Identity gives the unit, which is countable. See also Topics 141b9
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals are not actually contradictory, because they can be non-standard real numbers [Bostock]
     Full Idea: Non-standard natural numbers will yield non-standard rational and real numbers. These will include reciprocals which will be closer to 0 than any standard real number. These are like 'infinitesimals', so that notion is not actually a contradiction.
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Modern axioms of geometry do not need the real numbers [Bostock]
     Full Idea: A modern axiomatisation of geometry, such as Hilbert's (1899), does not need to claim the existence of real numbers anywhere in its axioms.
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5.ii)
     A reaction: This is despite the fact that geometry is reduced to algebra, and the real numbers are the equivalent of continuous lines. Bostock votes for a Greek theory of proportion in this role.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
The Peano Axioms describe a unique structure [Bostock]
     Full Idea: The Peano Axioms are categorical, meaning that they describe a unique structure.
     From: David Bostock (Philosophy of Mathematics [2009], 4.4 n20)
     A reaction: So if you think there is nothing more to the natural numbers than their structure, then the Peano Axioms give the essence of arithmetic. If you think that 'objects' must exist to generate a structure, there must be more to the numbers.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Hume's Principle is a definition with existential claims, and won't explain numbers [Bostock]
     Full Idea: Hume's Principle will not do as an implicit definition because it makes a positive claim about the size of the universe (which no mere definition can do), and because it does not by itself explain what the numbers are.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
Many things will satisfy Hume's Principle, so there are many interpretations of it [Bostock]
     Full Idea: Hume's Principle gives a criterion of identity for numbers, but it is obvious that many other things satisfy that criterion. The simplest example is probably the numerals (in any notation, decimal, binary etc.), giving many different interpretations.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
There are many criteria for the identity of numbers [Bostock]
     Full Idea: There is not just one way of giving a criterion of identity for numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege makes numbers sets to solve the Caesar problem, but maybe Caesar is a set! [Bostock]
     Full Idea: The Julius Caesar problem was one reason that led Frege to give an explicit definition of numbers as special sets. He does not appear to notice that the same problem affects his Axiom V for introducing sets (whether Caesar is or is not a set).
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: The Julius Caesar problem is a sceptical acid that eats into everything in philosophy of mathematics. You give all sorts of wonderful accounts of numbers, but at what point do you know that you now have a number, and not something else?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Numbers can't be positions, if nothing decides what position a given number has [Bostock]
     Full Idea: There is no ground for saying that a number IS a position, if the truth is that there is nothing to determine which number is which position.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: If numbers lose touch with the empirical ability to count physical objects, they drift off into a mad world where they crumble away.
Structuralism falsely assumes relations to other numbers are numbers' only properties [Bostock]
     Full Idea: Structuralism begins from a false premise, namely that numbers have no properties other than their relations to other numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 6.5)
     A reaction: Well said. Describing anything purely relationally strikes me as doomed, because you have to say why those things relate in those ways.
6. Mathematics / C. Sources of Mathematics / 3. Mathematical Nominalism
Nominalism about mathematics is either reductionist, or fictionalist [Bostock]
     Full Idea: Nominalism has two main versions, one which tries to 'reduce' the objects of mathematics to something simpler (Russell and Wittgenstein), and another which claims that such objects are mere 'fictions' which have no reality (Field).
     From: David Bostock (Philosophy of Mathematics [2009], 9)
Nominalism as based on application of numbers is no good, because there are too many applications [Bostock]
     Full Idea: The style of nominalism which aims to reduce statements about numbers to statements about their applications does not work for the natural numbers, because they have many applications, and it is arbitrary to choose just one of them.
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5.iii)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Actual measurement could never require the precision of the real numbers [Bostock]
     Full Idea: We all know that in practice no physical measurement can be 100 per cent accurate, and so it cannot require the existence of a genuinely irrational number, rather than some of the rational numbers close to it.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.3)
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Ordinals are mainly used adjectively, as in 'the first', 'the second'... [Bostock]
     Full Idea: The basic use of the ordinal numbers is their use as ordinal adjectives, in phrases such as 'the first', 'the second' and so on.
     From: David Bostock (Philosophy of Mathematics [2009], 9.5.iii)
     A reaction: That is because ordinals seem to attach to particulars, whereas cardinals seem to attach to groups. Then you say 'three is greater than four', it is not clear which type you are talking about.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Simple type theory has 'levels', but ramified type theory has 'orders' [Bostock]
     Full Idea: The simple theory of types distinguishes sets into different 'levels', but this is quite different from the distinction into 'orders' which is imposed by the ramified theory.
     From: David Bostock (Philosophy of Mathematics [2009], 8.1)
     A reaction: The ramified theory has both levels and orders (p.235). Russell's terminology is, apparently, inconsistent.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Neo-logicists meet the Caesar problem by saying Hume's Principle is unique to number [Bostock]
     Full Idea: The response of neo-logicists to the Julius Caesar problem is to strengthen Hume's Principle in the hope of ensuring that only numbers will satisfy it. They say the criterion of identity provided by HP is essential to number, and not to anything else.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
Neo-logicists agree that HP introduces number, but also claim that it suffices for the job [Bostock]
     Full Idea: The neo-logicists take up Frege's claim that Hume's Principle introduces a new concept (of a number), but unlike Frege they go on to claim that it by itself gives a complete account of that concept.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: So the big difference between Frege and neo-logicists is the Julius Caesar problem.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Treating numbers as objects doesn't seem like logic, since arithmetic fixes their totality [Bostock]
     Full Idea: If logic is neutral on the number of objects there are, then logicists can't construe numbers as objects, for arithmetic is certainly not neutral on the number of numbers there are. They must be treated in some other way, perhaps as numerical quantifiers.
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
If Hume's Principle is the whole story, that implies structuralism [Bostock]
     Full Idea: If Hume's Principle is all we are given, by way of explanation of what the numbers are, the only conclusion to draw would seem to be the structuralists' conclusion, ...studying all systems that satisfy that principle.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: Any approach that implies a set of matching interpretations will always imply structuralism. To avoid it, you need to pin the target down uniquely.
Many crucial logicist definitions are in fact impredicative [Bostock]
     Full Idea: Many of the crucial definitions in the logicist programme are in fact impredicative.
     From: David Bostock (Philosophy of Mathematics [2009], 8.2)
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Higher cardinalities in sets are just fairy stories [Bostock]
     Full Idea: In its higher reaches, which posit sets of huge cardinalities, set theory is just a fairy story.
     From: David Bostock (Philosophy of Mathematics [2009], 9.5.iii)
     A reaction: You can't say the higher reaches are fairy stories but the lower reaches aren't, if the higher is directly derived from the lower. The empty set and the singleton are fairy stories too. Bostock says the axiom of infinity triggers the fairy stories.
A fairy tale may give predictions, but only a true theory can give explanations [Bostock]
     Full Idea: A common view is that although a fairy tale may provide very useful predictions, it cannot provide explanations for why things happen as they do. In order to do that a theory must also be true (or, at least, an approximation to the truth).
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5)
     A reaction: Of course, fictionalism offers an explanation of mathematics as a whole, but not of the details (except as the implications of the initial fictional assumptions).
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
The best version of conceptualism is predicativism [Bostock]
     Full Idea: In my personal opinion, predicativism is the best version of conceptualism that we have yet discovered.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4)
     A reaction: Since conceptualism is a major player in the field, this makes predicativism a very important view. I won't vote Predicativist quite yet, but I'm tempted.
Conceptualism fails to grasp mathematical properties, infinity, and objective truth values [Bostock]
     Full Idea: Three simple objections to conceptualism in mathematics are that we do not ascribe mathematical properties to our ideas, that our ideas are presumably finite, and we don't think mathematics lacks truthvalue before we thought of it.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4)
     A reaction: [compressed; Bostock refers back to his Ch 2] Plus Idea 18134. On the whole I sympathise with conceptualism, so I will not allow myself to be impressed by any of these objections. (So, what's actually wrong with them.....?).
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
If abstracta only exist if they are expressible, there can only be denumerably many of them [Bostock]
     Full Idea: If an abstract object exists only when there is some suitable way of expressing it, then there are at most denumerably many abstract objects.
     From: David Bostock (Philosophy of Mathematics [2009], 8.2)
     A reaction: Fine by me. What an odd view, to think there are uncountably many abstract objects in existence, only a countable portion of which will ever be expressed! [ah! most people agree with me, p.243-4]
Predicativism makes theories of huge cardinals impossible [Bostock]
     Full Idea: Classical mathematicians say predicative mathematics omits areas of great interest, all concerning non-denumerable real numbers, such as claims about huge cardinals. There cannot be a predicative version of this theory.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: I'm not sure that anyone will really miss huge cardinals if they are prohibited, though cryptography seems to flirt with such things. Are we ever allowed to say that some entity conjured up by mathematicians is actually impossible?
If mathematics rests on science, predicativism may be the best approach [Bostock]
     Full Idea: It has been claimed that only predicative mathematics has a justification through its usefulness to science (an empiricist approach).
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: [compressed. Quine is the obvious candidate] I suppose predicativism gives your theory roots, whereas impredicativism is playing an abstract game.
If we can only think of what we can describe, predicativism may be implied [Bostock]
     Full Idea: If we accept the initial idea that we can think only of what we ourselves can describe, then something like the theory of predicativism quite naturally results
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: I hate the idea that we can only talk of what falls under a sortal, but 'what we can describe' is much more plausible. Whether or not you agree with this approach (I'm pondering it), this makes predicativism important.
The predicativity restriction makes a difference with the real numbers [Bostock]
     Full Idea: It is with the real numbers that the restrictions imposed by predicativity begin to make a real difference.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
The usual definitions of identity and of natural numbers are impredicative [Bostock]
     Full Idea: The predicative approach cannot accept either the usual definition of identity or the usual definition of the natural numbers, for both of these definitions are impredicative.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: [Bostock 237-8 gives details]
7. Existence / E. Categories / 3. Proposed Categories
There are ten categories: essence, quantity, quality, relation, place, time, position, state, activity, passivity [Aristotle]
     Full Idea: The four main types of predicates fall into ten categories: essence, quantity, quality, relation, place, time, position, state, activity, passivity.
     From: Aristotle (Topics [c.331 BCE], 103b20)
     A reaction: These are the standard ten categories of Aristotle. He is notable for the divisions not being sharp, and ten being a rough total. He is well aware of the limits of precision in such matters.
8. Modes of Existence / B. Properties / 1. Nature of Properties
An individual property has to exist (in past, present or future) [Aristotle]
     Full Idea: If it does not at present exist, or, if it has not existed in the past, or if it is not going to exist in the future, it will not be a property [idion] at all.
     From: Aristotle (Topics [c.331 BCE], 129a27)
     A reaction: This seems to cramp our style in counterfactual discussion. Can't we even mention an individual property if we believe that it will never exist. Utopian political discussion will have to cease!
8. Modes of Existence / B. Properties / 3. Types of Properties
An 'accident' is something which may possibly either belong or not belong to a thing [Aristotle]
     Full Idea: An 'accident' [sumbebekos] is something which may possibly either belong or not belong to any one and the self-same thing, such as 'sitting posture' or 'whiteness'. This is the best definition, because it tells us the essential meaning of the term itself.
     From: Aristotle (Topics [c.331 BCE], 102b07)
     A reaction: Thus a car could be red, or not red. Accidents are contingent. It does not follow that necessary properties are essential (see Idea 12262). There are accidents [sumbebekos], propria [idion] and essences [to ti en einai].
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Genus gives the essence better than the differentiae do [Aristotle]
     Full Idea: In assigning the essence [ti estin], it is more appropriate to state the genus than the differentiae; for he who describes 'man' as an 'animal' indicates his essence better than he who describes him as 'pedestrian'.
     From: Aristotle (Topics [c.331 BCE], 128a24)
     A reaction: See Idea 12279. This idea is only part of the story. My reading of this is simply that assigning a genus gives more information. We learn more about him when we say he is a man than when we say he is Socrates.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
In the case of a house the parts can exist without the whole, so parts are not the whole [Aristotle]
     Full Idea: In the case of a house, where the process of compounding the parts is obvious, though the parts exist, there is no reason why the whole should not be non-existent, and so the parts are not the same as the whole.
     From: Aristotle (Topics [c.331 BCE], 150a19)
     A reaction: Compare buying a piece of furniture, and being surprised to discover, when it is delivered, that it is self-assembly. This idea is a simple refutation of the claims of classical mereology, that wholes are just some parts. Aristotle uses modal claims.
9. Objects / D. Essence of Objects / 3. Individual Essences
Everything that is has one single essence [Aristotle]
     Full Idea: Everything that is has one single essence [en esti to einai].
     From: Aristotle (Topics [c.331 BCE], 141a36)
     A reaction: Does this include vague objects, and abstract 'objects'? Sceptics might ask what grounds this claim. Does Dr Jeckyll have two essences?
9. Objects / D. Essence of Objects / 7. Essence and Necessity / b. Essence not necessities
An 'idion' belongs uniquely to a thing, but is not part of its essence [Aristotle]
     Full Idea: A property [idion] is something which does not show the essence of a thing but belongs to it alone. ...No one calls anything a property which can possibly belong to something else.
     From: Aristotle (Topics [c.331 BCE], 102a18)
     A reaction: [See Charlotte Witt 106 on this] 'Property' is clearly a bad translation for such an individual item. Witt uses 'proprium', which is a necessary but nonessential property of something. Necessity is NOT the hallmark of essence. See Idea 12266.
9. Objects / E. Objects over Time / 11. End of an Object
Destruction is dissolution of essence [Aristotle]
     Full Idea: Destruction is a dissolution of essence.
     From: Aristotle (Topics [c.331 BCE], 153b30)
     A reaction: [plucked from context!] I can't think of a better way to define destruction, in order to distinguish it from damage. A vase is destroyed when its essential function cannot be recovered.
9. Objects / E. Objects over Time / 12. Origin as Essential
If two things are the same, they must have the same source and origin [Aristotle]
     Full Idea: When things are absolutely the same, their coming-into-being and destruction are also the same and so are the agents of their production and destruction.
     From: Aristotle (Topics [c.331 BCE], 152a02)
     A reaction: Thus Queen Elizabeth II has to be the result of that particular birth, and from those particular parents, as Kripke says? The inverse may not be true. Do twins have a single origin? Things that fission and then re-fuse differently? etc
9. Objects / F. Identity among Objects / 9. Sameness
'Same' is mainly for names or definitions, but also for propria, and for accidents [Aristotle]
     Full Idea: 'The same' is employed in several senses: its principal sense is for same name or same definition; a second sense occurs when sameness is applied to a property [idiu]; a third sense is applied to an accident.
     From: Aristotle (Topics [c.331 BCE], 103a24-33)
     A reaction: [compressed] 'Property' is better translated as 'proprium' - a property unique to a particular thing, but not essential - see Idea 12262. Things are made up of essence, propria and accidents, and three ways of being 'the same' are the result.
Two identical things have the same accidents, they are the same; if the accidents differ, they're different [Aristotle]
     Full Idea: If two things are the same then any accident of one must also be an accident of the other, and, if one of them is an accident of something else, so must the other be also. For, if there is any discrepancy on these points, obviously they are not the same.
     From: Aristotle (Topics [c.331 BCE], 152a36)
     A reaction: So what is always called 'Leibniz's Law' should actually be 'Aristotle's Law'! I can't see anything missing from the Aristotle version, but then, since most people think it is pretty obvious, you would expect the great stater of the obvious to get it.
Numerical sameness and generic sameness are not the same [Aristotle]
     Full Idea: Things which are the same specifically or generically are not necessarily the same or cannot possibly be the same numerically.
     From: Aristotle (Topics [c.331 BCE], 152b32)
     A reaction: See also Idea 12266. This looks to me to be a pretty precise anticipation of Peirce's type/token distinction, but without the terminology. It is reassuring that Aristotle spotted it, as that makes it more likely to be a genuine distinction.
10. Modality / A. Necessity / 6. Logical Necessity
Reasoning is when some results follow necessarily from certain claims [Aristotle]
     Full Idea: Reasoning [sullogismos] is a discussion in which, certain things having been laid down, something other than these things necessarily results through them.
     From: Aristotle (Topics [c.331 BCE], 100a25)
     A reaction: This is cited as the standard statement of the nature of logical necessity. One might challenge either the very word 'necessary', or the exact sense of the word employed here. Is it, in fact, metaphysical, or merely analytic?
14. Science / C. Induction / 1. Induction
Induction is the progress from particulars to universals [Aristotle]
     Full Idea: Induction is the progress from particulars to universals; if the skilled pilot is the best pilot and the skilled charioteer the best charioteer, then, in general, the skilled man is the best man in any particular sphere.
     From: Aristotle (Topics [c.331 BCE], 105a15)
     A reaction: It is a bit unclear whether we are deriving universal concepts, or merely general truths. Need general truths be absolute or necessary truths? Presumably occasionally the best person is not the most skilled, as in playing a musical instrument.
14. Science / C. Induction / 3. Limits of Induction
We say 'so in cases of this kind', but how do you decide what is 'of this kind'? [Aristotle]
     Full Idea: When it is necessary to establish the universal, people use the expression 'So in all cases of this kind'; but it is one of the most difficult tasks to define which of the terms proposed are 'of this kind' and which are not.
     From: Aristotle (Topics [c.331 BCE], 157a25)
     A reaction: It is particularly hard if induction is expressed as the search for universals, since the kind presumably is the universal, so the universal must be known before the induction can apply, which really is the most frightful nuisance for truth-seekers.
19. Language / F. Communication / 2. Assertion
In logic a proposition means the same when it is and when it is not asserted [Bostock]
     Full Idea: In Modus Ponens where the first premise is 'P' and the second 'P→Q', in the first premise P is asserted but in the second it is not. Yet it must mean the same in both premises, or it would be guilty of the fallacy of equivocation.
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
     A reaction: This is Geach's thought (leading to an objection to expressivism in ethics, that P means the same even if it is not expressed).
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
Justice and self-control are better than courage, because they are always useful [Aristotle]
     Full Idea: Justice [dikaiosune] and self-control [sophrosune] are preferable to courage, for the first two are always useful, but courage only sometimes.
     From: Aristotle (Topics [c.331 BCE], 117a36)
     A reaction: One could challenge his criterion. What of something which is absolutely vital on occasions, against something which is very mildly useful all the time? You may survive without justice, but not without courage. Compare Idea 12277.
Friendship is preferable to money, since its excess is preferable [Aristotle]
     Full Idea: Friendship is preferable to money; for excess of friendship is preferable to excess of money.
     From: Aristotle (Topics [c.331 BCE], 118b07)
     A reaction: Compare Idea 12276, which gives a different criterion for choosing between virtues. This idea is an interesting qualification of the doctrine of the mean.
23. Ethics / C. Virtue Theory / 4. External Goods / d. Friendship
We value friendship just for its own sake [Aristotle]
     Full Idea: We value friendship for its own sake, even if we are not likely to get anything else from it.
     From: Aristotle (Topics [c.331 BCE], 117a03)
     A reaction: In 'Ethics' he distinguishes some friendships which don't meet this requirement. Presumably true friendships survive all vicissitudes (except betrayal), but that makes such things fairly rare.
24. Political Theory / A. Basis of a State / 1. A People / a. Human distinctiveness
Man is intrinsically a civilized animal [Aristotle]
     Full Idea: It is an essential [kath' auto] property of man to be 'by nature a civilized animal'.
     From: Aristotle (Topics [c.331 BCE], 128b17)
     A reaction: I take this, along with man being intrinsically rational, to be the foundation of Aristotelian ethics. Given that we are civilized, self-evident criteria emerge for how to be good at it. A good person is, above all, a good citizen.
26. Natural Theory / B. Natural Kinds / 2. Defining Kinds
All water is the same, because of a certain similarity [Aristotle]
     Full Idea: Any water is said to be specifically the same as any other water because it has a certain similarity to it.
     From: Aristotle (Topics [c.331 BCE], 103a20)
     A reaction: (Cf. Idea 8153) It take this to be the hallmark of a natural kind, and we should not lose sight of it in the midst of discussions about rigid designation and essential identity. Tigers are only a natural kind insofar as they are indistinguishable.
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
'Being' and 'oneness' are predicated of everything which exists [Aristotle]
     Full Idea: 'Being' and 'oneness' are predicated of everything which exists.
     From: Aristotle (Topics [c.331 BCE], 121a18)
     A reaction: Is 'oneness' predicated of water? So existence always was a predicate, it seems, until Kant told us it wasn't. That existence is a quantifier, not a predicate, seems to be up for question again these days.
28. God / B. Proving God / 3. Proofs of Evidence / b. Teleological Proof
Unlike a stone, the parts of a watch are obviously assembled in order to show the time [Paley]
     Full Idea: When we come to inspect a watch we perceive (what we could not discover in a stone) that its several parts are put together for a purpose, to produce motion, and that motion so regulated as to point out the hour of the day.
     From: William Paley (Natural Theology [1802], Ch 1)
     A reaction: Microscopic examination of the stone would have surprised Paley. Should we infer a geometer because the sun is spherical? Crytals look designed, but are explained by deeper chemistry.
From the obvious purpose and structure of a watch we must infer that it was designed [Paley]
     Full Idea: The inference is inevitable that the watch had a maker; that there must have existed, at some time, an artificer or artificers who formed it for the purpose which we find it actually to answer, who designed its use.
     From: William Paley (Natural Theology [1802], Ch 1)
     A reaction: It rather begs the question to refer to an ordered structure as a 'design'. Why do we think it is absurd to think the the 'purpose' of the sun is to benefit mankind? Suppose we found a freakish natural sundial in the woods.
Even an imperfect machine can exhibit obvious design [Paley]
     Full Idea: It is not necessary that a machine be perfect, in order to show with what design it was made.
     From: William Paley (Natural Theology [1802], Ch 1)
     A reaction: This encounters Hume's point that you will then have to infer that the designer contains similar imperfections. If you look at plagues, famines and mothers dying in childbirth (see Mill), you might wish the designer had never started.
All the signs of design found in a watch are also found in nature [Paley]
     Full Idea: Every indication of contrivance, every manifestation of design, which existed in the watch, exists in the works of nature.
     From: William Paley (Natural Theology [1802], Ch.3)
     A reaction: This is far from obvious. It was crucial to the watch analogy that we immediately see its one self-evident purpose. No one looks at nature and says 'Aha, I know what this is all for'.
No organ shows purpose more obviously than the eyelid [Paley]
     Full Idea: The eyelid defends the eye; it wipes it; it closes it in sleep. Are there, in any work of art whatever, purposes more evident than those which this organ fulfils?
     From: William Paley (Natural Theology [1802], p.24), quoted by Armand Marie LeRoi - The Lagoon: how Aristotle invented science 031
     A reaction: Nice to have another example, in addition to the watch. He is not wholly wrong, because it is impossible to give an evolutionary account of the development of the eyelid without referring to some sort of teleological aspect. The eyelid has a function.