Combining Texts

All the ideas for 'Changes in Events and Changes in Things', 'What Required for Foundation for Maths?' and 'Words without Objects'

unexpand these ideas     |    start again     |     specify just one area for these texts


43 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
     Full Idea: Definition provides us with the means for converting our intuitions into mathematically usable concepts.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
     Full Idea: When you have proved something you know not only that it is true, but why it must be true.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
     A reaction: Note the word 'must'. Presumably both the grounding and the necessitation of the truth are revealed.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
     Full Idea: The idea of 'generating' sets is only a metaphor - the existence of the hierarchy is established without appealing to such dubious notions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
     A reaction: Presumably there can be a 'dependence' or 'determination' relation which does not involve actual generation.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
     Full Idea: Our very notion of a set is that of an extensional plurality limited in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
     Full Idea: In the mainstream tradition of modern logic, beginning with Boole, Peirce and Schröder, descending through Löwenheim and Skolem to reach maturity with Tarski and his school ...saw logic as a branch of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-1)
     A reaction: [The lesser tradition, of Frege and Russell, says mathematics is a branch of logic]. Mayberry says the Fregean tradition 'has almost died out'.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
     Full Idea: First-order logic is very weak, but therein lies its strength. Its principle tools (Compactness, Completeness, Löwenheim-Skolem Theorems) can be established only because it is too weak to axiomatize either arithmetic or analysis.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.411-2)
     A reaction: He adds the proviso that this is 'unless we are dealing with structures on whose size we have placed an explicit, finite bound' (p.412-1).
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
     Full Idea: Second-order logic is a powerful tool of definition: by means of it alone we can capture mathematical structure up to isomorphism using simple axiom systems.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
If plural variables have 'some values', then non-count variables have 'some value' [Laycock]
     Full Idea: If a plural variable is said to have not a single value but some values (some clothes), then a non-count variable may have, more quirkier still, some value (some clothing, for instance) in ranging arbitrarily over the scattered stuff.
     From: Henry Laycock (Words without Objects [2006], 4.4)
     A reaction: We seem to need the notion of a sample, or an archetype, to fit the bill. I hereby name them 'sample variables'. Damn - Laycock got there first, on p.137.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
     Full Idea: The 'logica magna' [of the Fregean tradition] has quantifiers ranging over a fixed domain, namely everything there is. In the Boolean tradition the domains differ from interpretation to interpretation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-2)
     A reaction: Modal logic displays both approaches, with different systems for global and local domains.
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Plurals are semantical but not ontological [Laycock]
     Full Idea: Plurality is a semantical but not also an ontological construction.
     From: Henry Laycock (Words without Objects [2006], Intro 4)
     A reaction: I love it when philososphers make simple and illuminating remarks like this. You could read 500 pages of technical verbiage about plural reference without grasping that this is the underlying issue. Sounds right to me.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
     Full Idea: No logic which can axiomatize real analysis can have the Löwenheim-Skolem property.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
     Full Idea: The purpose of a 'classificatory' axiomatic theory is to single out an otherwise disparate species of structures by fixing certain features of morphology. ...The aim is to single out common features.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
     Full Idea: The central dogma of the axiomatic method is this: isomorphic structures are mathematically indistinguishable in their essential properties.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
     A reaction: Hence it is not that we have to settle for the success of a system 'up to isomorphism', since that was the original aim. The structures must differ in their non-essential properties, or they would be the same system.
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
     Full Idea: The purpose of what I am calling 'eliminatory' axiomatic theories is precisely to eliminate from mathematics those peculiar ideal and abstract objects that, on the traditional view, constitute its subject matter.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-1)
     A reaction: A very interesting idea. I have a natural antipathy to 'abstract objects', because they really mess up what could otherwise be a very tidy ontology. What he describes might be better called 'ignoring' axioms. The objects may 'exist', but who cares?
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
     Full Idea: No logic which can axiomatise arithmetic can be compact or complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
     A reaction: I take this to be because there are new truths in the transfinite level (as well as the problem of incompleteness).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
     Full Idea: Quantities for Greeks were concrete things - lines, surfaces, solids, times, weights. At the centre of their science of quantity was the beautiful theory of ratio and proportion (...in which the notion of number does not appear!).
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
     A reaction: [He credits Eudoxus, and cites Book V of Euclid]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
     Full Idea: The abstract objects of modern mathematics, the real numbers, were invented by the mathematicians of the seventeenth century in order to simplify and to generalize the Greek science of quantity.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Some non-count nouns can be used for counting, as in 'several wines' or 'fewer cheeses' [Laycock]
     Full Idea: The very words we class as non-count nouns may themselves be used for counting, of kinds or types, and phrases like 'several wines' are perfectly in order. ...Not only do we have 'less cheese', but we also have the non-generic 'fewer cheeses'.
     From: Henry Laycock (Words without Objects [2006], Intro 4 n23)
     A reaction: [compressed] Laycock generally endorses the thought that what can be counted is not simply distinguished by a precise class of applied vocabulary. He offers lots of borderline or ambiguous cases in his footnotes.
Some apparent non-count words can take plural forms, such as 'snows' or 'waters' [Laycock]
     Full Idea: Some words that seem to be semantically non-count can take syntactically plural forms: 'snows', 'sands', 'waters' and the like.
     From: Henry Laycock (Words without Objects [2006], Intro 4 n24)
     A reaction: This seems to involve parcels of the stuff. The 'snows of yesteryear' occur at different times. 'Taking the waters' probably involves occasions. The 'Arabian sands' presumably occur in different areas. Semantics won't fix what is countable.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
     Full Idea: In Cantor's new vision, the infinite, the genuine infinite, does not disappear, but presents itself in the guise of the absolute, as manifested in the species of all sets or the species of all ordinal numbers.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
     Full Idea: We may describe Cantor's achievement by saying, not that he tamed the infinite, but that he extended the finite.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
     Full Idea: If we grant, as surely we must, the central importance of proof and definition, then we must also grant that mathematics not only needs, but in fact has, foundations.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
     Full Idea: The ultimate principles upon which mathematics rests are those to which mathematicians appeal without proof; and the primitive concepts of mathematics ...themselves are grasped directly, if grasped at all, without the mediation of definition.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
     A reaction: This begs the question of whether the 'grasping' is purely a priori, or whether it derives from experience. I defend the latter, and Jenkins puts the case well.
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
     Full Idea: An account of the foundations of mathematics must specify four things: the primitive concepts for use in definitions, the rules governing definitions, the ultimate premises of proofs, and rules allowing advance from premises to conclusions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
     Full Idea: No axiomatic theory, formal or informal, of first or of higher order can logically play a foundational role in mathematics. ...It is obvious that you cannot use the axiomatic method to explain what the axiomatic method is.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
     Full Idea: The sole theoretical interest of first-order Peano arithmetic derives from the fact that it is a first-order reduct of a categorical second-order theory. Its axioms can be proved incomplete only because the second-order theory is categorical.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
     Full Idea: If we did not know that the second-order axioms characterise the natural numbers up to isomorphism, we should have no reason to suppose, a priori, that first-order Peano Arithmetic should be complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
     Full Idea: The idea that set theory must simply be identified with first-order Zermelo-Fraenkel is surprisingly widespread. ...The first-order axiomatic theory of sets is clearly inadequate as a foundation of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-2)
     A reaction: [He is agreeing with a quotation from Skolem].
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
     Full Idea: One does not have to translate 'ordinary' mathematics into the Zermelo-Fraenkel system: ordinary mathematics comes embodied in that system.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-1)
     A reaction: Mayberry seems to be a particular fan of set theory as spelling out the underlying facts of mathematics, though it has to be second-order.
Set theory is not just another axiomatised part of mathematics [Mayberry]
     Full Idea: The fons et origo of all confusion is the view that set theory is just another axiomatic theory and the universe of sets just another mathematical structure. ...The universe of sets ...is the world that all mathematical structures inhabit.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.416-1)
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
The category of stuff does not suit reference [Laycock]
     Full Idea: The central fact about the category of stuff or matter is that it is profoundly antithetical to reference.
     From: Henry Laycock (Words without Objects [2006], Pref)
     A reaction: This is taking 'reference' in the strictly singular classical sense, but clearly we refer to water in various ways. Laycock's challenge is very helpful. We have been in the grips of a terrible orthodoxy.
Descriptions of stuff are neither singular aggregates nor plural collections [Laycock]
     Full Idea: The definite descriptions of stuff like water are neither singular descriptions denoting individual mereological aggregates, nor plural descriptions denoting multitudes of discrete units or semantically determined atoms.
     From: Henry Laycock (Words without Objects [2006], 5.3)
     A reaction: Laycock makes an excellent case for this claim, and seems to invite a considerable rethink of our basic ontology to match it, one which he ultimately hints at calling 'romantic'. Nice. Conservatives try to force stuff into classical moulds.
7. Existence / C. Structure of Existence / 8. Stuff / b. Mixtures
We shouldn't think some water retains its identity when it is mixed with air [Laycock]
     Full Idea: Suppose that water, qua vapour, mixes with the atmosphere. Is there any abstract metaphysical principle, other than that of atomism, which implies that water must, in any such process, retain its identity? That claim seems indefensible.
     From: Henry Laycock (Words without Objects [2006], 1.2 n22)
     A reaction: It can't be right that some stuff always loses its identity in a mixture, if the mixture was in a closed vessel, and then separated again. Dispersion is what destroys the identity, not mixing.
7. Existence / D. Theories of Reality / 8. Facts / b. Types of fact
That Queen Anne is dead is a 'general fact', not a fact about Queen Anne [Prior,AN]
     Full Idea: The fact that Queen Anne has been dead for some years is not, in the strict sense of 'about', a fact about Queen Anne; it is not a fact about anyone or anything - it is a general fact.
     From: Arthur N. Prior (Changes in Events and Changes in Things [1968], p.13), quoted by Robin Le Poidevin - Past, Present and Future of Debate about Tense 1 b
     A reaction: He distinguishes 'general facts' (states of affairs, I think) from 'individual facts', involving some specific object. General facts seem to be what are expressed by negative existential truths, such as 'there is no Loch Ness Monster'. Useful.
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
     Full Idea: The abstractness of the old fashioned real numbers has been replaced by generality in the modern theory of complete ordered fields.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: In philosophy, I'm increasingly thinking that we should talk much more of 'generality', and a great deal less about 'universals'. (By which I don't mean that redness is just the set of red things).
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
Parts must be of the same very general type as the wholes [Laycock]
     Full Idea: The notion of a part is such that parts must be of the same very general type - concrete, material or physical, for instance - as the wholes of which they are (said to be) parts.
     From: Henry Laycock (Words without Objects [2006], 2.9)
     A reaction: The phrase 'same very general type' cries out for investigation. Can an army contain someone who isn't much of a soldier? Can the Treasury contain a fear of inflation?
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
'Humility is a virtue' has an abstract noun, but 'water is a liquid' has a generic concrete noun [Laycock]
     Full Idea: Work is needed to distinguish abstract nouns ...from the generic uses of what are otherwise concrete nouns. The contrast is that of 'humility is a virtue' and 'water is a liquid'.
     From: Henry Laycock (Words without Objects [2006], Intro 4 n25)
     A reaction: 'Work is needed' implies 'let me through, I'm an analytic philosopher', but I don't think they will separate very easily. What does 'watery' mean? Does water have concrete virtues?
19. Language / B. Reference / 1. Reference theories
It is said that proper reference is our intellectual link with the world [Laycock]
     Full Idea: Some people hold that it is reference, in some more or less full-blooded sense, which constitutes our basic intellectual or psychological connection with the world.
     From: Henry Laycock (Words without Objects [2006], Pref)
     A reaction: This is the view which Laycock sets out to challenge, by showing that we talk about stuff like water without any singular reference occurring at all. I think he is probably right.
27. Natural Reality / D. Time / 2. Passage of Time / e. Tensed (A) series
'Thank goodness that's over' is not like 'thank goodness that happened on Friday' [Prior,AN]
     Full Idea: One says 'thank goodness that is over', ..and it says something which it is impossible which any use of any tenseless copula with a date should convey. It certainly doesn't mean the same as 'thank goodness that occured on Friday June 15th 1954'.
     From: Arthur N. Prior (Changes in Events and Changes in Things [1968]), quoted by Adrian Bardon - Brief History of the Philosophy of Time 4 'Pervasive'
     A reaction: [Ref uncertain] This seems to be appealing to ordinary usage, in which tenses have huge significance. If we take time (with its past, present and future) as primitive, then tenses can have full weight. Did tenses mean anything at all to Einstein?