Combining Texts

All the ideas for 'Saundaranandakavya', 'On 'Generation and Corruption'' and 'Model Theory'

unexpand these ideas     |    start again     |     specify just one area for these texts


12 ideas

1. Philosophy / D. Nature of Philosophy / 2. Invocation to Philosophy
Pursue truth with the urgency of someone whose clothes are on fire [Ashvaghosha]
     Full Idea: As though your turban or your clothes were on fire, so with a sense of urgency should you apply your intellect to the comprehension of the truths.
     From: Ashvaghosha (Saundaranandakavya [c.50], XVI)
     A reaction: The best philosophers need no such urging. I retain a romantic view that we should be 'natural' in these things. See Plato's views in Idea 2153 and 1638. However, maybe I should be confronted with this quotation every morning when I awake.
2. Reason / D. Definition / 7. Contextual Definition
The idea that groups of concepts could be 'implicitly defined' was abandoned [Hodges,W]
     Full Idea: Late nineteenth century mathematicians said that, although plus, minus and 0 could not be precisely defined, they could be partially 'implicitly defined' as a group. This nonsense was rejected by Frege and others, as expressed in Russell 1903.
     From: Wilfrid Hodges (Model Theory [2005], 2)
     A reaction: [compressed] This is helpful in understanding what is going on in Frege's 'Grundlagen'. I won't challenge Hodges's claim that such definitions are nonsense, but there is a case for understanding groups of concepts together.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Since first-order languages are complete, |= and |- have the same meaning [Hodges,W]
     Full Idea: In first-order languages the completeness theorem tells us that T |= φ holds if and only if there is a proof of φ from T (T |- φ). Since the two symbols express the same relationship, theorist often just use |- (but only for first-order!).
     From: Wilfrid Hodges (Model Theory [2005], 3)
     A reaction: [actually no spaces in the symbols] If you are going to study this kind of theory of logic, the first thing you need to do is sort out these symbols, which isn't easy!
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
|= in model-theory means 'logical consequence' - it holds in all models [Hodges,W]
     Full Idea: If every structure which is a model of a set of sentences T is also a model of one of its sentences φ, then this is known as the model-theoretic consequence relation, and is written T |= φ. Not to be confused with |= meaning 'satisfies'.
     From: Wilfrid Hodges (Model Theory [2005], 3)
     A reaction: See also Idea 10474, which gives the other meaning of |=, as 'satisfies'. The symbol is ALSO used in propositional logical, to mean 'tautologically implies'! Sort your act out, logicians.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
|= should be read as 'is a model for' or 'satisfies' [Hodges,W]
     Full Idea: The symbol in 'I |= S' reads that if the interpretation I (about word meaning) happens to make the sentence S state something true, then I 'is a model for' S, or I 'satisfies' S.
     From: Wilfrid Hodges (Model Theory [2005], 1)
     A reaction: Unfortunately this is not the only reading of the symbol |= [no space between | and =!], so care and familiarity are needed, but this is how to read it when dealing with models. See also Idea 10477.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory studies formal or natural language-interpretation using set-theory [Hodges,W]
     Full Idea: Model theory is the study of the interpretation of any language, formal or natural, by means of set-theoretic structures, with Tarski's truth definition as a paradigm.
     From: Wilfrid Hodges (Model Theory [2005], Intro)
     A reaction: My attention is caught by the fact that natural languages are included. Might we say that science is model theory for English? That sounds like Quine's persistent message.
A 'structure' is an interpretation specifying objects and classes of quantification [Hodges,W]
     Full Idea: A 'structure' in model theory is an interpretation which explains what objects some expressions refer to, and what classes some quantifiers range over.
     From: Wilfrid Hodges (Model Theory [2005], 1)
     A reaction: He cites as examples 'first-order structures' used in mathematical model theory, and 'Kripke structures' used in model theory for modal logic. A structure is also called a 'universe'.
Models in model theory are structures, not sets of descriptions [Hodges,W]
     Full Idea: The models in model-theory are structures, but there is also a common use of 'model' to mean a formal theory which describes and explains a phenomenon, or plans to build it.
     From: Wilfrid Hodges (Model Theory [2005], 5)
     A reaction: Hodges is not at all clear here, but the idea seems to be that model-theory offers a set of objects and rules, where the common usage offers a set of descriptions. Model-theory needs homomorphisms to connect models to things,
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
First-order logic can't discriminate between one infinite cardinal and another [Hodges,W]
     Full Idea: First-order logic is hopeless for discriminating between one infinite cardinal and another.
     From: Wilfrid Hodges (Model Theory [2005], 4)
     A reaction: This seems rather significant, since mathematics largely relies on first-order logic for its metatheory. Personally I'm tempted to Ockham's Razor out all these super-infinities, but mathematicians seem to make use of them.
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / f. Ancient elements
Elements are found last in dismantling bodies, and first in generating them [Albert of Saxony]
     Full Idea: On one possible description, an element is what is found last when bodies are taken apart, and what is found first when bodies are generated.
     From: Albert of Saxony (On 'Generation and Corruption' [1356], II.3), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 2.1
29. Religion / C. Spiritual Disciplines / 3. Buddhism
The Eightfold Path concerns morality, wisdom, and tranquillity [Ashvaghosha]
     Full Idea: The Eightfold Path has three steps concerning morality - right speech, right bodily action, and right livelihood; three of wisdom - right views, right intentions, and right effort; and two of tranquillity - right mindfulness and right concentration.
     From: Ashvaghosha (Saundaranandakavya [c.50], XVI)
     A reaction: Most of this translates quite comfortably into the aspirations of western philosophy. For example, 'right effort' sounds like Kant's claim that only a good will is truly good (Idea 3710). The Buddhist division is interesting for action theory.
29. Religion / D. Religious Issues / 2. Immortality / d. Heaven
At the end of a saint, he is not located in space, but just ceases to be disturbed [Ashvaghosha]
     Full Idea: When an accomplished saint comes to the end, he does not go anywhere down in the earth or up in the sky, nor into any of the directions of space, but because his defilements have become extinct he simply ceases to be disturbed.
     From: Ashvaghosha (Saundaranandakavya [c.50], XVI)
     A reaction: To 'cease to be disturbed' is the most attractive account of heaven I have encountered. It all sounds a bit dull though. I wonder, as usual, how they know all this stuff.