Combining Texts

All the ideas for 'Saundaranandakavya', 'Introduction to Mathematical Logic' and 'After Finitude'

unexpand these ideas     |    start again     |     specify just one area for these texts


47 ideas

1. Philosophy / B. History of Ideas / 5. Later European Thought
Since Kant we think we can only access 'correlations' between thinking and being [Meillassoux]
     Full Idea: The central notion of philosophy since Kant is 'correlation' - that we only ever have access to the correlation between thinking and being, and never to either term considered apart from the other.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: Meillassoux's charge is that philosophy has thereby completely failed to grasp the scientific revolution, which has used mathematics to make objectivity possible. Quine and Putnam would be good examples of what he has in mind.
The Copernican Revolution decentres the Earth, but also decentres thinking from reality [Meillassoux]
     Full Idea: The Copernican Revolution is not so much the decentring of observers in the solar system, but (by the mathematizing of nature) the decentring of thought relative to the world within the process of knowledge.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 5)
     A reaction: In other words, I take it, the Copernican Revolution was the discovery of objectivity. That is a very nice addition to my History of Ideas collection.
1. Philosophy / B. History of Ideas / 6. Twentieth Century Thought
In Kant the thing-in-itself is unknowable, but for us it has become unthinkable [Meillassoux]
     Full Idea: The major shift that has occurred in the conception of thought from Kant's time to ours is from the unknowability of the thing-in-itself to its unthinkability.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: Meillassoux is making the case that philosophy is alienating us more and more from the triumphant realism of the scientific revolution. He says thinking has split from being. He's right. Modern American pragmatists are the worst (not Peirce!).
1. Philosophy / D. Nature of Philosophy / 2. Invocation to Philosophy
Pursue truth with the urgency of someone whose clothes are on fire [Ashvaghosha]
     Full Idea: As though your turban or your clothes were on fire, so with a sense of urgency should you apply your intellect to the comprehension of the truths.
     From: Ashvaghosha (Saundaranandakavya [c.50], XVI)
     A reaction: The best philosophers need no such urging. I retain a romantic view that we should be 'natural' in these things. See Plato's views in Idea 2153 and 1638. However, maybe I should be confronted with this quotation every morning when I awake.
1. Philosophy / G. Scientific Philosophy / 3. Scientism
Since Kant, philosophers have claimed to understand science better than scientists do [Meillassoux]
     Full Idea: Ever since Kant, to think science as a philosopher has been to claim that science harbours a meaning other than the one delivered by science itself.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 5)
     A reaction: The point is that science discovered objectivity (via the mathematising of nature), and Kant utterly rejected objectivity, by enmeshing the human mind in every possible scientific claim. This makes Meillassoux and I very cross.
2. Reason / A. Nature of Reason / 5. Objectivity
Since Kant, objectivity is defined not by the object, but by the statement's potential universality [Meillassoux]
     Full Idea: Since Kant, objectivity is no longer defined with reference to the object in itself, but rather with reference to the possible universality of an objective statement.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: Meillassoux disapproves of this, as a betrayal by philosophers of the scientific revolution, which gave us true objectivity (e.g. about how the world was before humanity).
2. Reason / B. Laws of Thought / 2. Sufficient Reason
If we insist on Sufficient Reason the world will always be a mystery to us [Meillassoux]
     Full Idea: So long as we continue to believe that there is a reason why things are the way they are rather than some other way, we will construe this world is a mystery, since no such reason will every be vouchsafed to us.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Giving up sufficient reason sounds like a rather drastic response to this. Put it like this: Will we ever be able to explain absolutely everything? No. So will the world always be a little mysterious to us? Yes, obviously. Is that a problem? No!
2. Reason / B. Laws of Thought / 3. Non-Contradiction
Non-contradiction is unjustified, so it only reveals a fact about thinking, not about reality? [Meillassoux]
     Full Idea: The principle of non-contradiction itself is without reason, and consequently it can only be the norm for what is thinkable by us, rather than for what is possible in the absolute sense.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: This is not Meillassoux's view, but describes the modern heresy of 'correlationism', which ties all assessments of how reality is to our capacity to think about it. Personally I take logical non-contradiction to derive from non-contradiction in nature.
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Post proved the consistency of propositional logic in 1921 [Walicki]
     Full Idea: A proof of the consistency of propositional logic was given by Emil Post in 1921.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2.1)
Propositional language can only relate statements as the same or as different [Walicki]
     Full Idea: Propositional language is very rudimentary and has limited powers of expression. The only relation between various statements it can handle is that of identity and difference. As are all the same, but Bs can be different from As.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 7 Intro)
     A reaction: [second sentence a paraphrase] In predicate logic you could represent two statements as being the same except for one element (an object or predicate or relation or quantifier).
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Boolean connectives are interpreted as functions on the set {1,0} [Walicki]
     Full Idea: Boolean connectives are interpreted as functions on the set {1,0}.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 5.1)
     A reaction: 1 and 0 are normally taken to be true (T) and false (F). Thus the functions output various combinations of true and false, which are truth tables.
4. Formal Logic / E. Nonclassical Logics / 7. Paraconsistency
We can allow contradictions in thought, but not inconsistency [Meillassoux]
     Full Idea: For contemporary logicians, it is not non-contradiction that provides the criterion for what is thinkable, but rather inconsistency.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: The point is that para-consistent logic might permit isolated contradictions (as true) within a system, but it is only contradiction across the system (inconsistencies) which make the system untenable.
Paraconsistent logics are to prevent computers crashing when data conflicts [Meillassoux]
     Full Idea: Paraconsistent logics were only developed in order to prevent computers, such as expert medical systems, from deducing anything whatsoever from contradictory data, because of the principle of 'ex falso quodlibet'.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
Paraconsistent logic is about statements, not about contradictions in reality [Meillassoux]
     Full Idea: Paraconsistent logics are only ever dealing with contradictions inherent in statements about the world, never with the real contradictions in the world.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: Thank goodness for that! I can accept that someone in a doorway is both in the room and not in the room, but not that they are existing in a real state of contradiction. I fear that a few daft people embrace the logic as confirming contradictory reality.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is useful for defining sets by properties, when the members are not yet known [Walicki]
     Full Idea: The empty set is mainly a mathematical convenience - defining a set by describing the properties of its members in an involved way, we may not know from the very beginning what its members are.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
The empty set avoids having to take special precautions in case members vanish [Walicki]
     Full Idea: Without the assumption of the empty set, one would often have to take special precautions for the case where a set happened to contain no elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
     A reaction: Compare the introduction of the concept 'zero', where special precautions are therefore required. ...But other special precautions are needed without zero. Either he pays us, or we pay him, or ...er. Intersecting sets need the empty set.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
Ordinals play the central role in set theory, providing the model of well-ordering [Walicki]
     Full Idea: Ordinals play the central role in set theory, providing the paradigmatic well-orderings.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: When you draw the big V of the iterative hierarchy of sets (built from successive power sets), the ordinals are marked as a single line up the middle, one ordinal for each level.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
To determine the patterns in logic, one must identify its 'building blocks' [Walicki]
     Full Idea: In order to construct precise and valid patterns of arguments one has to determine their 'building blocks'. One has to identify the basic terms, their kinds and means of combination.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History Intro)
     A reaction: A deceptively simple and important idea. All explanation requires patterns and levels, and it is the idea of building blocks which makes such things possible. It is right at the centre of our grasp of everything.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' of a theory specifies interpreting a language in a domain to make all theorems true [Walicki]
     Full Idea: A specification of a domain of objects, and of the rules for interpreting the symbols of a logical language in this domain such that all the theorems of the logical theory are true is said to be a 'model' of the theory.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.1.3)
     A reaction: The basic ideas of this emerged 1915-30, but it needed Tarski's account of truth to really get it going.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The L-S Theorem says no theory (even of reals) says more than a natural number theory [Walicki]
     Full Idea: The L-S Theorem is ...a shocking result, since it implies that any consistent formal theory of everything - even about biology, physics, sets or the real numbers - can just as well be understood as being about natural numbers. It says nothing more.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2)
     A reaction: Illuminating. Particularly the point that no theory about the real numbers can say anything more than a theory about the natural numbers. So the natural numbers contain all the truths we can ever express? Eh?????
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
A compact axiomatisation makes it possible to understand a field as a whole [Walicki]
     Full Idea: Having such a compact [axiomatic] presentation of a complicated field [such as Euclid's], makes it possible to relate not only to particular theorems but also to the whole field as such.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
Axiomatic systems are purely syntactic, and do not presuppose any interpretation [Walicki]
     Full Idea: Axiomatic systems, their primitive terms and proofs, are purely syntactic, that is, do not presuppose any interpretation. ...[142] They never address the world directly, but address a possible semantic model which formally represents the world.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinals are transitive sets of transitive sets; or transitive sets totally ordered by inclusion [Walicki]
     Full Idea: An ordinal can be defined as a transitive set of transitive sets, or else, as a transitive set totally ordered by set inclusion.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Ordinals are the empty set, union with the singleton, and any arbitrary union of ordinals [Walicki]
     Full Idea: The collection of ordinals is defined inductively: Basis: the empty set is an ordinal; Ind: for an ordinal x, the union with its singleton is also an ordinal; and any arbitrary (possibly infinite) union of ordinals is an ordinal.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: [symbolism translated into English] Walicki says they are called 'ordinal numbers', but are in fact a set.
The union of finite ordinals is the first 'limit ordinal'; 2ω is the second... [Walicki]
     Full Idea: We can form infinite ordinals by taking unions of ordinals. We can thus form 'limit ordinals', which have no immediate predecessor. ω is the first (the union of all finite ordinals), ω + ω = sω is second, 3ω the third....
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Two infinite ordinals can represent a single infinite cardinal [Walicki]
     Full Idea: There may be several ordinals for the same cardinality. ...Two ordinals can represent different ways of well-ordering the same number (aleph-0) of elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: This only applies to infinite ordinals and cardinals. For the finite, the two coincide. In infinite arithmetic the rules are different.
Members of ordinals are ordinals, and also subsets of ordinals [Walicki]
     Full Idea: Every member of an ordinal is itself an ordinal, and every ordinal is a transitive set (its members are also its subsets; a member of a member of an ordinal is also a member of the ordinal).
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
What is mathematically conceivable is absolutely possible [Meillassoux]
     Full Idea: We must establish the thesis that what is mathematically conceivable is absolutely possible.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 5)
     A reaction: The truth of this thesis would permanently establish mathematics as the only possible language of science. Personally I have no idea how you could prove or assess such a thesis. It is a lovely speculation, though. 'The structure of the possible' (p,127)
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
In non-Euclidean geometry, all Euclidean theorems are valid that avoid the fifth postulate [Walicki]
     Full Idea: Since non-Euclidean geometry preserves all Euclid's postulates except the fifth one, all the theorems derived without the use of the fifth postulate remain valid.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Inductive proof depends on the choice of the ordering [Walicki]
     Full Idea: Inductive proof is not guaranteed to work in all cases and, particularly, it depends heavily on the choice of the ordering.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.1.1)
     A reaction: There has to be an well-founded ordering for inductive proofs to be possible.
7. Existence / A. Nature of Existence / 1. Nature of Existence
The absolute is the impossibility of there being a necessary existent [Meillassoux]
     Full Idea: We maintain that it is absolutely necessary that every entity might not exist. ...The absolute is the absolute impossibility of a necessary being.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: This is the main thesis of his book. The usual candidates for necessary existence are God, and mathematical objects. I am inclined to agree with Meillassoux.
7. Existence / A. Nature of Existence / 5. Reason for Existence
It is necessarily contingent that there is one thing rather than another - so something must exist [Meillassoux]
     Full Idea: It is necessary that there be something rather than nothing because it is necessarily contingent that there is something rather than something else.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: The great charm of metaphysics is the array of serious answers to the question of why there is something rather than nothing. You'll need to read Meillassoux's book to understand this one.
7. Existence / A. Nature of Existence / 6. Criterion for Existence
We must give up the modern criterion of existence, which is a correlation between thought and being [Meillassoux]
     Full Idea: It is incumbent upon us to break with the ontological requisite of the moderns, according to which 'to be is to be a correlate'.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: He blames Kant for this pernicious idea, which has driven philosophy away from realist science, when it should be supporting and joining it. As a realist I agree, and find Meillassoux very illuminating on the subject.
10. Modality / A. Necessity / 2. Nature of Necessity
Scotus based modality on semantic consistency, instead of on what the future could allow [Walicki]
     Full Idea: The link between time and modality was severed by Duns Scotus, who proposed a notion of possibility based purely on the notion of semantic consistency. 'Possible' means for him logically possible, that is, not involving contradiction.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History B.4)
10. Modality / B. Possibility / 5. Contingency
Possible non-being which must be realised is 'precariousness'; absolute contingency might never not-be [Meillassoux]
     Full Idea: My term 'precariousness' designates a possibility of not-being which must eventually be realised. By contrast, absolute contingency designates a pure possibility; one which may never be realised.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 3)
     A reaction: I thoroughly approve of this distinction, because I have often enountered the assumption that all contingency is precariousness, and I have never seen why that should be so. In Aquinas's Third Way, for example. The 6 on a die may never come up.
10. Modality / B. Possibility / 7. Chance
The idea of chance relies on unalterable physical laws [Meillassoux]
     Full Idea: The very notion of chance is only conceivable on condition that there are unalterable physical laws.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Laws might be contingent, even though they never alter. Chance in horse racing relies on the stability of whole institution of horse racing.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Unlike speculative idealism, transcendental idealism assumes the mind is embodied [Meillassoux]
     Full Idea: What distinguishes transcendental idealism from speculative idealism is the fact that the former does not posit the existence of the transcendental subject apart from its bodily individuation.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: These modern French philosophers explain things so much more clearly than the English! The 'speculative' version is seen in Berkeley. On p.17 he says transcendental idealism is 'civilised', and speculative idealism is 'uncouth'.
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / c. Primary qualities
The aspects of objects that can be mathematical allow it to have objective properties [Meillassoux]
     Full Idea: All aspects of the object that can give rise to a mathematical thought rather than to a perception or a sensation can be meaningfully turned into the properties of the thing not only as it is with me, but also as it is without me.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: This is Meillassoux's spin on the primary/secondary distinction, which he places at the heart of the scientific revolution. Cartesian dualism offers a separate space for the secondary qualities. He is appalled when philosophers reject the distinction.
14. Science / B. Scientific Theories / 1. Scientific Theory
How can we mathematically describe a world that lacks humans? [Meillassoux]
     Full Idea: How is mathematical discourse able to describe a reality where humanity is absent?
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: He is referring to the prehistoric world. He takes this to be a key question about the laws of nature. We extrapolate mathematically from the experienced world, relying on the stability of the laws. Must they be necessary to be stable? No, it seems.
14. Science / C. Induction / 3. Limits of Induction
Hume's question is whether experimental science will still be valid tomorrow [Meillassoux]
     Full Idea: Hume's question can be formulated as follows: can we demonstrate that the experimental science which is possible today will still be possible tomorrow?
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Could there be deep universal changes going on in nature which science could never, even in principle, detect?
16. Persons / B. Nature of the Self / 4. Presupposition of Self
The transcendental subject is not an entity, but a set of conditions making science possible [Meillassoux]
     Full Idea: The transcendental subject simply cannot be said to exist; which is to say that the subject is not an entity, but rather a set of conditions rendering objective scientific knowledge of entities possible.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 1)
     A reaction: Meillassoux treats this as part of the Kantian Disaster, which made an accurate account of the scientific revolution impossible for philosophers. Kant's ego seems to have primarily an epistemological role.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / b. Scientific necessity
If the laws of nature are contingent, shouldn't we already have noticed it? [Meillassoux]
     Full Idea: The standard objection is that if the laws of nature were actually contingent, we would already have noticed it.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Meillassoux offers a sustained argument that the laws of nature are necessarily contingent. In Idea 19660 he distinguishes contingencies that must change from those that merely could change.
Why are contingent laws of nature stable? [Meillassoux]
     Full Idea: We must ask how we are to explain the manifest stability of physical laws, given that we take these to be contingent?
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 4)
     A reaction: Meissalloux offers a very deep and subtle answer to this question... It is based on the possibilities of chaos being an uncountable infinity... It is a very nice question, which physicists might be able to answer, without help from philosophy.
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
The ontological proof of a necessary God ensures a reality external to the mind [Meillassoux]
     Full Idea: Since Descartes conceives of God as existing necessarily, whether I exist to think of him or not, Descartes assures me of a possible access to an absolute reality - a Great Outdoors that is not a correlate of my thought.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: His point is that the ontological argument should be seen as part of the scientific revolution, and not an anomaly within it. Interesting.
28. God / C. Attitudes to God / 5. Atheism
Now that the absolute is unthinkable, even atheism is just another religious belief (though nihilist) [Meillassoux]
     Full Idea: Once the absolute has become unthinkable, even atheism, which also targets God's inexistence in the manner of an absolute, is reduced to a mere belief, and hence to a religion, albeit of the nihilist kind.
     From: Quentin Meillassoux (After Finitude; the necessity of contingency [2006], 2)
     A reaction: An interesting claim. Rather hard to agree or disagree, though the idea that atheism must qualify as a religion seems odd. If it is unqualified it does have the grand quality of a religion, but if it is fallibilist it just seems like an attitude.
29. Religion / C. Spiritual Disciplines / 3. Buddhism
The Eightfold Path concerns morality, wisdom, and tranquillity [Ashvaghosha]
     Full Idea: The Eightfold Path has three steps concerning morality - right speech, right bodily action, and right livelihood; three of wisdom - right views, right intentions, and right effort; and two of tranquillity - right mindfulness and right concentration.
     From: Ashvaghosha (Saundaranandakavya [c.50], XVI)
     A reaction: Most of this translates quite comfortably into the aspirations of western philosophy. For example, 'right effort' sounds like Kant's claim that only a good will is truly good (Idea 3710). The Buddhist division is interesting for action theory.
29. Religion / D. Religious Issues / 2. Immortality / d. Heaven
At the end of a saint, he is not located in space, but just ceases to be disturbed [Ashvaghosha]
     Full Idea: When an accomplished saint comes to the end, he does not go anywhere down in the earth or up in the sky, nor into any of the directions of space, but because his defilements have become extinct he simply ceases to be disturbed.
     From: Ashvaghosha (Saundaranandakavya [c.50], XVI)
     A reaction: To 'cease to be disturbed' is the most attractive account of heaven I have encountered. It all sounds a bit dull though. I wonder, as usual, how they know all this stuff.