Combining Texts

All the ideas for 'Saundaranandakavya', 'The Ways of Paradox' and 'Physics and Philosophy'

unexpand these ideas     |    start again     |     specify just one area for these texts


27 ideas

1. Philosophy / D. Nature of Philosophy / 2. Invocation to Philosophy
Pursue truth with the urgency of someone whose clothes are on fire [Ashvaghosha]
     Full Idea: As though your turban or your clothes were on fire, so with a sense of urgency should you apply your intellect to the comprehension of the truths.
     From: Ashvaghosha (Saundaranandakavya [c.50], XVI)
     A reaction: The best philosophers need no such urging. I retain a romantic view that we should be 'natural' in these things. See Plato's views in Idea 2153 and 1638. However, maybe I should be confronted with this quotation every morning when I awake.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
The set scheme discredited by paradoxes is actually the most natural one [Quine]
     Full Idea: Each proposed revision of set theory is unnatural, because the natural scheme is the unrestricted one that the antinomies discredit.
     From: Willard Quine (The Ways of Paradox [1961], p.16)
     A reaction: You can either takes this free-far-all version of set theory, and gradually restrain it for each specific problem, or start from scratch and build up in safe steps. The latter is (I think) the 'iterated' approach.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Russell's antinomy challenged the idea that any condition can produce a set [Quine]
     Full Idea: In the case of Russell's antinomy, the tacit and trusted pattern of reasoning that is found wanting is this: for any condition you can formulate, there is a class whose members are the things meeting the condition.
     From: Willard Quine (The Ways of Paradox [1961], p.11)
     A reaction: This is why Russell's Paradox is so important for set theory, which in turn makes it important for the foundations of mathematics.
5. Theory of Logic / L. Paradox / 3. Antinomies
Antinomies contradict accepted ways of reasoning, and demand revisions [Quine]
     Full Idea: An 'antinomy' produces a self-contradiction by accepted ways of reasoning. It establishes that some tacit and trusted pattern of reasoning must be made explicit and henceforward be avoided or revised.
     From: Willard Quine (The Ways of Paradox [1961], p.05)
     A reaction: Quine treats antinomies as of much greater importance than mere paradoxes. It is often possible to give simple explanations of paradoxes, but antinomies go to the root of our belief system. This was presumably Kant's intended meaning.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
Whenever the pursuer reaches the spot where the pursuer has been, the pursued has moved on [Quine]
     Full Idea: The Achilles argument is that (if the front runner keeps running) each time the pursuer reaches a spot where the pursuer has been, the pursued has moved a bit beyond.
     From: Willard Quine (The Ways of Paradox [1961], p.03)
     A reaction: Quine is always wonderfully lucid, and this is the clearest simple statement of the paradox.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
A barber shaves only those who do not shave themselves. So does he shave himself? [Quine]
     Full Idea: In a certain village there is a barber, who shaves all and only those men in the village who do not shave themselves. So does the barber shave himself? The barber shaves himself if and only if he does not shave himself.
     From: Willard Quine (The Ways of Paradox [1961], p.02)
     A reaction: [Russell himself quoted this version of his paradox, from an unnamed source] Quine treats his as trivial because it only concerns barbers, but the full Russell paradox is a major 'antinomy', because it concerns sets.
Membership conditions which involve membership and non-membership are paradoxical [Quine]
     Full Idea: With Russell's antinomy, ...each tie the trouble comes of taking a membership condition that itself talks in turn of membership and non-membership.
     From: Willard Quine (The Ways of Paradox [1961], p.13)
     A reaction: Hence various stipulations to rule out vicious circles or referring to sets of the 'wrong type' are invoked to cure the problem. The big question is how strong to make the restrictions.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If we write it as '"this sentence is false" is false', there is no paradox [Quine]
     Full Idea: If we supplant the sentence 'this sentence is false' with one saying what it refers to, we get '"this sentence is false" is false'. But then the whole outside sentence attributes falsity no longer to itself but to something else, so there is no paradox.
     From: Willard Quine (The Ways of Paradox [1961], p.07)
     A reaction: Quine is pointing us towards type theory and meta-languages to solve the problem. We now have the Revenge Liar, and the problem has not been fully settled.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
If it can't be expressed mathematically, it can't occur in nature? [Heisenberg]
     Full Idea: The solution was to turn around the question How can one in the known mathematical scheme express a given experimental situation? and ask Is it true that only such situations can arise in nature as can be expressed in the mathematical formalism?
     From: Werner Heisenberg (Physics and Philosophy [1958], 02)
     A reaction: This has the authority of the great Heisenberg, and is the ultimate expression of 'mathematical physics', beyond anything Galileo or Newton ever conceived. I suppose Pythagoras would have thought that Heisenberg was obviously right.
7. Existence / D. Theories of Reality / 2. Realism
Quantum theory shows that exact science does not need dogmatic realism [Heisenberg]
     Full Idea: It is only through quantum theory that we have learned that exact science is possible without the basis of dogmatic realism.
     From: Werner Heisenberg (Physics and Philosophy [1958], 05)
7. Existence / D. Theories of Reality / 4. Anti-realism
Quantum theory does not introduce minds into atomic events [Heisenberg]
     Full Idea: Certainly quantum theory does not contain genuine subjective features, it does not introduce the mind of the physicist as a part of the atomic event.
     From: Werner Heisenberg (Physics and Philosophy [1958], 03)
     A reaction: This should be digested by anyone who wants to erect some dodgy anti-realist, idealist, subjective metaphysics on the basis of the Copenhagen interpretation of quantum mechanics.
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
A 'probability wave' is a quantitative version of Aristotle's potential, a mid-way type of reality [Heisenberg]
     Full Idea: The 1924 idea of the 'probability wave' meant a tendency for something. It was a quantitative version of the old concept of 'potentia' in Aristotelian philosophy ...a strange kind of physical reality just in the middle between possibility and reality.
     From: Werner Heisenberg (Physics and Philosophy [1958], 02)
     A reaction: [compressed] As far as I can see, he is talking about a disposition or power, which is exactly between a mere theoretical possibility and an actuality. See the Mumford/Lill Anjum proposal for a third modal value, between possible and necessary.
9. Objects / B. Unity of Objects / 2. Substance / a. Substance
We can retain the idea of 'substance', as indestructible mass or energy [Heisenberg]
     Full Idea: One could consider mass and energy as two different forms of the same 'substance' and thereby keep the idea of substance as indestructible.
     From: Werner Heisenberg (Physics and Philosophy [1958], 07)
9. Objects / C. Structure of Objects / 2. Hylomorphism / b. Form as principle
Basic particles have a mathematical form, which is more important than their substance [Heisenberg]
     Full Idea: The smallest parts of matter are not the fundamental Beings, as in the philosophy of Democritus, but are mathematical forms. Here it is quite evident that the form is more important than the substance of which it is the form.
     From: Werner Heisenberg (Physics and Philosophy [1958], 04)
     A reaction: Heisenberg is quite consciously endorsing hylomorphism here, with a Pythagorean twist to it.
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
We give a mathematical account of a system of natural connections in order to clarify them [Heisenberg]
     Full Idea: When we represent a group of connections by a closed and coherent set of concepts, axioms, definitions and laws which in turn is represented by a mathematical scheme we have isolated and idealised them with the purpose of clarification.
     From: Werner Heisenberg (Physics and Philosophy [1958], 06)
     A reaction: Attacks on the regularity theory of laws, and the notion that explanation is by laws, tend to downplay this point - that obtaining clarity and precision is a sort of explanation, even if it fails to go deeper.
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
Seven theories in science: mechanics, heat, electricity, quantum, particles, relativity, life [Heisenberg, by PG]
     Full Idea: Science has seven closed systems of concepts and axioms: Newtonian mechanics; the theory of heat; electricity and magnetism; quantum theory; the theory of elementary particles; general relativity; and the theory of organic life.
     From: report of Werner Heisenberg (Physics and Philosophy [1958], 06) by PG - Db (ideas)
     A reaction: [my summary of pp.86-88 and 92] It is interesting to have spelled out that there are number of 'closed' theories, which are only loosely connected to one another. New discoveries launch whole new theories, instead of being subsumed.
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / a. Energy
Energy is that which moves, and is the substance from which everything is made [Heisenberg]
     Full Idea: Energy is the substance from which all elementary particles, all atoms and therefore all things are made, and energy is that which moves.
     From: Werner Heisenberg (Physics and Philosophy [1958], 04)
     A reaction: I'm not sure what energy is, but I like this because it says that nature is fundamentally active. Nothing makes sense without that basic assumption (on which Leibniz continually insists).
Energy is an unchanging substance, having many forms, and causing all change [Heisenberg]
     Full Idea: Energy is a substance, since its total amount does not change. ...Energy can be changed into motion, into heat, into light and into tension. Energy may be called the fundamental cause for all change in the world.
     From: Werner Heisenberg (Physics and Philosophy [1958], 04)
     A reaction: Grandiose stuff. I remain unconvinced that Heisenberg (clever fellow, I'm told) has any idea of what he is talking about.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
Maxwell introduced real fields, which transferred forces from point to point [Heisenberg]
     Full Idea: In the theory of fields of force one came back to the older idea, that action is transferred from one point to a neighbouring point. ...With Maxwell the fields of force seemed to have acquired the same degree of reality as the body's of Newton's theory.
     From: Werner Heisenberg (Physics and Philosophy [1958], 06)
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Radiation interference needs waves, but radiation photoelectric effects needs particles [Heisenberg]
     Full Idea: How could it be that the same radiation that produces interference patterns, and therefore must consist of waves, also produces the photoelectric effect, and therefore must consist of moving particles.
     From: Werner Heisenberg (Physics and Philosophy [1958], 02)
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
An atom's stability after collisions needs explaining (which Newton's mechanics can't do) [Heisenberg]
     Full Idea: The first new model of the atom could not explain the most characteristic features of the atom, its enormous stability. No planetary system following the laws of Newton's mechanics would ever go back to its original configuration after a collision.
     From: Werner Heisenberg (Physics and Philosophy [1958], 02)
Position is complementary to velocity or momentum, so the whole system is indeterminate [Heisenberg]
     Full Idea: The knowledge of the position of a particle is complementary to the knowledge of its velocity or momentum. If we know one with high accuracy we cannot know the other with high accuracy; still we must know both for determining the behaviour of the system.
     From: Werner Heisenberg (Physics and Philosophy [1958], 03)
     A reaction: This is the famous Uncertainty Principle, expressed in plain language by the man himself. At this point we lost our grip on the prospects of determining the behaviour of natural systems.
It was formerly assumed that electromagnetic waves could not be a reality in themselves [Heisenberg]
     Full Idea: The idea that electromagnetic waves could be a reality in themselves, independent of any bodies, did at that time not occur to the physicists.
     From: Werner Heisenberg (Physics and Philosophy [1958], 07)
     A reaction: 'At that time' is when they thought the waves must travel through something, called the 'ether'.
27. Natural Reality / C. Space / 4. Substantival Space
So-called 'empty' space is the carrier of geometry and kinematics [Heisenberg]
     Full Idea: From our modern point of view we would say that the empty space between the atoms was not nothing; it was the carrier of geometry and kinematics.
     From: Werner Heisenberg (Physics and Philosophy [1958], 04)
     A reaction: I'm not sure what the 'carrier of geometry and kinematics' means, but it is interesting that he doesn't mention 'fields' (unless they carry the kinematics?)
27. Natural Reality / D. Time / 3. Parts of Time / e. Present moment
In relativity the length of the 'present moment' is relative to distance from the observer [Heisenberg]
     Full Idea: In classical theory we assume past and future are separated by an infinitely short time interval called the present moment. In relativity it is different: future and past are separated by a finite time interval dependent on the distance from the observer.
     From: Werner Heisenberg (Physics and Philosophy [1958], 07)
     A reaction: Not sure I understand this, but it is a revelation to realise that not only is time made relative to observers, but the length of the 'present moment' also becomes relative. The infinitesimal present moment has always bothered me.
29. Religion / C. Spiritual Disciplines / 3. Buddhism
The Eightfold Path concerns morality, wisdom, and tranquillity [Ashvaghosha]
     Full Idea: The Eightfold Path has three steps concerning morality - right speech, right bodily action, and right livelihood; three of wisdom - right views, right intentions, and right effort; and two of tranquillity - right mindfulness and right concentration.
     From: Ashvaghosha (Saundaranandakavya [c.50], XVI)
     A reaction: Most of this translates quite comfortably into the aspirations of western philosophy. For example, 'right effort' sounds like Kant's claim that only a good will is truly good (Idea 3710). The Buddhist division is interesting for action theory.
29. Religion / D. Religious Issues / 2. Immortality / d. Heaven
At the end of a saint, he is not located in space, but just ceases to be disturbed [Ashvaghosha]
     Full Idea: When an accomplished saint comes to the end, he does not go anywhere down in the earth or up in the sky, nor into any of the directions of space, but because his defilements have become extinct he simply ceases to be disturbed.
     From: Ashvaghosha (Saundaranandakavya [c.50], XVI)
     A reaction: To 'cease to be disturbed' is the most attractive account of heaven I have encountered. It all sounds a bit dull though. I wonder, as usual, how they know all this stuff.