Combining Texts

All the ideas for 'The Theory of Knowledge', 'Proof of an External World' and 'Sets, Aggregates and Numbers'

unexpand these ideas     |    start again     |     specify just one area for these texts


10 ideas

5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Logical constants seem to be entities in propositions, but are actually pure form [Russell]
     Full Idea: 'Logical constants', which might seem to be entities occurring in logical propositions, are really concerned with pure form, and are not actually constituents of the propositions in the verbal expressions of which their names occur.
     From: Bertrand Russell (The Theory of Knowledge [1913], 1.IX)
     A reaction: This seems to entirely deny the existence of logical constants, and yet he says that they are named. Russell was obviously under pressure here from Wittgenstein.
We use logical notions, so they must be objects - but I don't know what they really are [Russell]
     Full Idea: Such words as or, not, all, some, plainly involve logical notions; since we use these intelligently, we must be acquainted with the logical objects involved. But their isolation is difficult, and I do not know what the logical objects really are.
     From: Bertrand Russell (The Theory of Knowledge [1913], 1.IX)
     A reaction: See Idea 23476, from the previous page. Russell is struggling. Wittgenstein was telling him that the constants are rules (shown in truth tables), rather than objects.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths are known by their extreme generality [Russell]
     Full Idea: A touchstone by which logical propositions may be distinguished from all others is that they result from a process of generalisation which has been carried to its utmost limits.
     From: Bertrand Russell (The Theory of Knowledge [1913], p.129), quoted by J. Alberto Coffa - The Semantic Tradition from Kant to Carnap 7 'What'
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
How many? must first partition an aggregate into sets, and then logic fixes its number [Yourgrau]
     Full Idea: We want to know How many what? You must first partition an aggregate into parts relevant to the question, where no partition is privileged. How the partitioned set is to be numbered is bound up with its unique members, and follows from logic alone.
     From: Palle Yourgrau (Sets, Aggregates and Numbers [1985], 'New Problem')
     A reaction: [Compressed wording of Yourgrau's summary of Frege's 'relativity argument'] Concepts do the partitioning. Yourgau says this fails, because the same argument applies to the sets themselves, as well as to the original aggregates.
Nothing is 'intrinsically' numbered [Yourgrau]
     Full Idea: Nothing at all is 'intrinsically' numbered.
     From: Palle Yourgrau (Sets, Aggregates and Numbers [1985], 'What the')
     A reaction: Once you are faced with distinct 'objects' of some sort, they can play the role of 'unit' in counting, so his challenge is that nothing is 'intrinsically' an object, which is the nihilism explored by Unger, Van Inwagen and Merricks. Aristotle disagrees...
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Defining 'three' as the principle of collection or property of threes explains set theory definitions [Yourgrau]
     Full Idea: The Frege-Maddy definition of number (as the 'property' of being-three) explains why the definitions of Von Neumann, Zermelo and others work, by giving the 'principle of collection' that ties together all threes.
     From: Palle Yourgrau (Sets, Aggregates and Numbers [1985], 'A Fregean')
     A reaction: [compressed two or three sentences] I am strongly in favour of the best definition being the one which explains the target, rather than just pinning it down. I take this to be Aristotle's view.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
We can't use sets as foundations for mathematics if we must await results from the upper reaches [Yourgrau]
     Full Idea: Sets could hardly serve as a foundation for number theory if we had to await detailed results in the upper reaches of the edifice before we could make our first move.
     From: Palle Yourgrau (Sets, Aggregates and Numbers [1985], 'Two')
You can ask all sorts of numerical questions about any one given set [Yourgrau]
     Full Idea: We can address a set with any question at all that admits of a numerical reply. Thus we can ask of {Carter, Reagan} 'How many feet do the members have?'.
     From: Palle Yourgrau (Sets, Aggregates and Numbers [1985], 'On Numbering')
     A reaction: This is his objection to the Fregean idea that once you have fixed the members of a set, you have thereby fixed the unique number that belongs with the set.
7. Existence / D. Theories of Reality / 8. Facts / d. Negative facts
There can't be a negative of a complex, which is negated by its non-existence [Potter on Russell]
     Full Idea: On Russell's pre-war conception it is obvious that a complex cannot be negative. If a complex were true, what would make it false would be its non-existence, not the existence of some other complex.
     From: comment on Bertrand Russell (The Theory of Knowledge [1913]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 41 'Neg'
     A reaction: It might be false because it doesn't exist, but also 'made' false by a rival complex (such as Desdemona loving Othello).
11. Knowledge Aims / B. Certain Knowledge / 2. Common Sense Certainty
I can prove a hand exists, by holding one up, pointing to it, and saying 'here is one hand' [Moore,GE]
     Full Idea: I can prove now that two human hands exist. How? By holding up my two hands, and saying, as I make a certain gesture with the right hand, 'Here is one hand', and adding, as I gesture with the left, 'and here is another'.
     From: G.E. Moore (Proof of an External World [1939], p.1)
     A reaction: The words need to be spoken, presumably, so that what he is doing fits into the linguistic conventions of what will normally be accepted as a proof. In fact, just holding the hand up seems enough. The proof begs the question of virtual reality.