Combining Texts

All the ideas for 'The Theory of Knowledge', 'Which Logic is the Right Logic?' and 'Sets, Aggregates and Numbers'

unexpand these ideas     |    start again     |     specify just one area for these texts


25 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice now seems acceptable and obvious (if it is meaningful) [Tharp]
     Full Idea: The main objection to the axiom of choice was that it had to be given by some law or definition, but since sets are arbitrary this seems irrelevant. Formalists consider it meaningless, but set-theorists consider it as true, and practically obvious.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §3)
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is either for demonstration, or for characterizing structures [Tharp]
     Full Idea: One can distinguish at least two quite different senses of logic: as an instrument of demonstration, and perhaps as an instrument for the characterization of structures.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: This is trying to capture the proof-theory and semantic aspects, but merely 'characterizing' something sounds like a rather feeble aspiration for the semantic side of things. Isn't it to do with truth, rather than just rule-following?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Elementary logic is complete, but cannot capture mathematics [Tharp]
     Full Idea: Elementary logic cannot characterize the usual mathematical structures, but seems to be distinguished by its completeness.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic isn't provable, but will express set-theory and classic problems [Tharp]
     Full Idea: The expressive power of second-order logic is too great to admit a proof procedure, but is adequate to express set-theoretical statements, and open questions such as the continuum hypothesis or the existence of big cardinals are easily stated.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Logical constants seem to be entities in propositions, but are actually pure form [Russell]
     Full Idea: 'Logical constants', which might seem to be entities occurring in logical propositions, are really concerned with pure form, and are not actually constituents of the propositions in the verbal expressions of which their names occur.
     From: Bertrand Russell (The Theory of Knowledge [1913], 1.IX)
     A reaction: This seems to entirely deny the existence of logical constants, and yet he says that they are named. Russell was obviously under pressure here from Wittgenstein.
We use logical notions, so they must be objects - but I don't know what they really are [Russell]
     Full Idea: Such words as or, not, all, some, plainly involve logical notions; since we use these intelligently, we must be acquainted with the logical objects involved. But their isolation is difficult, and I do not know what the logical objects really are.
     From: Bertrand Russell (The Theory of Knowledge [1913], 1.IX)
     A reaction: See Idea 23476, from the previous page. Russell is struggling. Wittgenstein was telling him that the constants are rules (shown in truth tables), rather than objects.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
In sentential logic there is a simple proof that all truth functions can be reduced to 'not' and 'and' [Tharp]
     Full Idea: In sentential logic there is a simple proof that all truth functions, of any number of arguments, are definable from (say) 'not' and 'and'.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §0)
     A reaction: The point of 'say' is that it can be got down to two connectives, and these are just the usual preferred pair.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
The main quantifiers extend 'and' and 'or' to infinite domains [Tharp]
     Full Idea: The symbols ∀ and ∃ may, to start with, be regarded as extrapolations of the truth functional connectives ∧ ('and') and ∨ ('or') to infinite domains.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §5)
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
There are at least five unorthodox quantifiers that could be used [Tharp]
     Full Idea: One might add to one's logic an 'uncountable quantifier', or a 'Chang quantifier', or a 'two-argument quantifier', or 'Shelah's quantifier', or 'branching quantifiers'.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §3)
     A reaction: [compressed - just listed for reference, if you collect quantifiers, like collecting butterflies]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths are known by their extreme generality [Russell]
     Full Idea: A touchstone by which logical propositions may be distinguished from all others is that they result from a process of generalisation which has been carried to its utmost limits.
     From: Bertrand Russell (The Theory of Knowledge [1913], p.129), quoted by J. Alberto Coffa - The Semantic Tradition from Kant to Carnap 7 'What'
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Skolem mistakenly inferred that Cantor's conceptions were illusory [Tharp]
     Full Idea: Skolem deduced from the Löwenheim-Skolem theorem that 'the absolutist conceptions of Cantor's theory' are 'illusory'. I think it is clear that this conclusion would not follow even if elementary logic were in some sense the true logic, as Skolem assumed.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §7)
     A reaction: [Tharp cites Skolem 1962 p.47] Kit Fine refers to accepters of this scepticism about the arithmetic of infinities as 'Skolemites'.
The Löwenheim-Skolem property is a limitation (e.g. can't say there are uncountably many reals) [Tharp]
     Full Idea: The Löwenheim-Skolem property seems to be undesirable, in that it states a limitation concerning the distinctions the logic is capable of making, such as saying there are uncountably many reals ('Skolem's Paradox').
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness would seem to be an essential requirement of a proof procedure [Tharp]
     Full Idea: Soundness would seem to be an essential requirement of a proof procedure, since there is little point in proving formulas which may turn out to be false under some interpretation.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / K. Features of Logics / 4. Completeness
Completeness and compactness together give axiomatizability [Tharp]
     Full Idea: Putting completeness and compactness together, one has axiomatizability.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
If completeness fails there is no algorithm to list the valid formulas [Tharp]
     Full Idea: In general, if completeness fails there is no algorithm to list the valid formulas.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: I.e. the theory is not effectively enumerable.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Compactness is important for major theories which have infinitely many axioms [Tharp]
     Full Idea: It is strange that compactness is often ignored in discussions of philosophy of logic, since the most important theories have infinitely many axioms.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: An example of infinite axioms is the induction schema in first-order Peano Arithmetic.
Compactness blocks infinite expansion, and admits non-standard models [Tharp]
     Full Idea: The compactness condition seems to state some weakness of the logic (as if it were futile to add infinitely many hypotheses). To look at it another way, formalizations of (say) arithmetic will admit of non-standard models.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A complete logic has an effective enumeration of the valid formulas [Tharp]
     Full Idea: A complete logic has an effective enumeration of the valid formulas.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
Effective enumeration might be proved but not specified, so it won't guarantee knowledge [Tharp]
     Full Idea: Despite completeness, the mere existence of an effective enumeration of the valid formulas will not, by itself, provide knowledge. For example, one might be able to prove that there is an effective enumeration, without being able to specify one.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: The point is that completeness is supposed to ensure knowledge (of what is valid but unprovable), and completeness entails effective enumerability, but more than the latter is needed to do the key job.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
How many? must first partition an aggregate into sets, and then logic fixes its number [Yourgrau]
     Full Idea: We want to know How many what? You must first partition an aggregate into parts relevant to the question, where no partition is privileged. How the partitioned set is to be numbered is bound up with its unique members, and follows from logic alone.
     From: Palle Yourgrau (Sets, Aggregates and Numbers [1985], 'New Problem')
     A reaction: [Compressed wording of Yourgrau's summary of Frege's 'relativity argument'] Concepts do the partitioning. Yourgau says this fails, because the same argument applies to the sets themselves, as well as to the original aggregates.
Nothing is 'intrinsically' numbered [Yourgrau]
     Full Idea: Nothing at all is 'intrinsically' numbered.
     From: Palle Yourgrau (Sets, Aggregates and Numbers [1985], 'What the')
     A reaction: Once you are faced with distinct 'objects' of some sort, they can play the role of 'unit' in counting, so his challenge is that nothing is 'intrinsically' an object, which is the nihilism explored by Unger, Van Inwagen and Merricks. Aristotle disagrees...
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Defining 'three' as the principle of collection or property of threes explains set theory definitions [Yourgrau]
     Full Idea: The Frege-Maddy definition of number (as the 'property' of being-three) explains why the definitions of Von Neumann, Zermelo and others work, by giving the 'principle of collection' that ties together all threes.
     From: Palle Yourgrau (Sets, Aggregates and Numbers [1985], 'A Fregean')
     A reaction: [compressed two or three sentences] I am strongly in favour of the best definition being the one which explains the target, rather than just pinning it down. I take this to be Aristotle's view.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
We can't use sets as foundations for mathematics if we must await results from the upper reaches [Yourgrau]
     Full Idea: Sets could hardly serve as a foundation for number theory if we had to await detailed results in the upper reaches of the edifice before we could make our first move.
     From: Palle Yourgrau (Sets, Aggregates and Numbers [1985], 'Two')
You can ask all sorts of numerical questions about any one given set [Yourgrau]
     Full Idea: We can address a set with any question at all that admits of a numerical reply. Thus we can ask of {Carter, Reagan} 'How many feet do the members have?'.
     From: Palle Yourgrau (Sets, Aggregates and Numbers [1985], 'On Numbering')
     A reaction: This is his objection to the Fregean idea that once you have fixed the members of a set, you have thereby fixed the unique number that belongs with the set.
7. Existence / D. Theories of Reality / 8. Facts / d. Negative facts
There can't be a negative of a complex, which is negated by its non-existence [Potter on Russell]
     Full Idea: On Russell's pre-war conception it is obvious that a complex cannot be negative. If a complex were true, what would make it false would be its non-existence, not the existence of some other complex.
     From: comment on Bertrand Russell (The Theory of Knowledge [1913]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 41 'Neg'
     A reaction: It might be false because it doesn't exist, but also 'made' false by a rival complex (such as Desdemona loving Othello).