Combining Texts

All the ideas for 'On the Notion of Cause', 'Physics and Philosophy' and 'Psychophysical supervenience'

unexpand these ideas     |    start again     |     specify just one area for these texts


25 ideas

1. Philosophy / G. Scientific Philosophy / 3. Scientism
Philosophers usually learn science from each other, not from science [Russell]
     Full Idea: Philosophers are too apt to take their views on science from each other, not from science.
     From: Bertrand Russell (On the Notion of Cause [1912], p.178)
     A reaction: This wasn't true of Russell, but it is certainly true of me. I rely on philosophical researchers to find the interesting bits of science for me (like blindsight). Memo to myself: read more science.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
If it can't be expressed mathematically, it can't occur in nature? [Heisenberg]
     Full Idea: The solution was to turn around the question How can one in the known mathematical scheme express a given experimental situation? and ask Is it true that only such situations can arise in nature as can be expressed in the mathematical formalism?
     From: Werner Heisenberg (Physics and Philosophy [1958], 02)
     A reaction: This has the authority of the great Heisenberg, and is the ultimate expression of 'mathematical physics', beyond anything Galileo or Newton ever conceived. I suppose Pythagoras would have thought that Heisenberg was obviously right.
7. Existence / D. Theories of Reality / 2. Realism
Quantum theory shows that exact science does not need dogmatic realism [Heisenberg]
     Full Idea: It is only through quantum theory that we have learned that exact science is possible without the basis of dogmatic realism.
     From: Werner Heisenberg (Physics and Philosophy [1958], 05)
7. Existence / D. Theories of Reality / 4. Anti-realism
Quantum theory does not introduce minds into atomic events [Heisenberg]
     Full Idea: Certainly quantum theory does not contain genuine subjective features, it does not introduce the mind of the physicist as a part of the atomic event.
     From: Werner Heisenberg (Physics and Philosophy [1958], 03)
     A reaction: This should be digested by anyone who wants to erect some dodgy anti-realist, idealist, subjective metaphysics on the basis of the Copenhagen interpretation of quantum mechanics.
8. Modes of Existence / B. Properties / 4. Intrinsic Properties
Extrinsic properties, unlike intrinsics, imply the existence of a separate object [Kim, by Lewis]
     Full Idea: Kim suggest that 'extrinsic' properties are those that imply 'accompaniment' (coexisting with some wholly distinct contingent object), whereas 'intrinsic' properties are compatible with 'loneliness' (being un-accompanied).
     From: report of Jaegwon Kim (Psychophysical supervenience [1982], 9th pg) by David Lewis - Extrinsic Properties II
     A reaction: The aim of Kim and Lewis is to get the ontological commitment down to a minimum - in this case just to objects (and mysterious 'implications'!). I like nominalism, but you can't just deny properties. 'Loneliness' is extrinsic!
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
A 'probability wave' is a quantitative version of Aristotle's potential, a mid-way type of reality [Heisenberg]
     Full Idea: The 1924 idea of the 'probability wave' meant a tendency for something. It was a quantitative version of the old concept of 'potentia' in Aristotelian philosophy ...a strange kind of physical reality just in the middle between possibility and reality.
     From: Werner Heisenberg (Physics and Philosophy [1958], 02)
     A reaction: [compressed] As far as I can see, he is talking about a disposition or power, which is exactly between a mere theoretical possibility and an actuality. See the Mumford/Lill Anjum proposal for a third modal value, between possible and necessary.
9. Objects / B. Unity of Objects / 2. Substance / a. Substance
We can retain the idea of 'substance', as indestructible mass or energy [Heisenberg]
     Full Idea: One could consider mass and energy as two different forms of the same 'substance' and thereby keep the idea of substance as indestructible.
     From: Werner Heisenberg (Physics and Philosophy [1958], 07)
9. Objects / C. Structure of Objects / 2. Hylomorphism / b. Form as principle
Basic particles have a mathematical form, which is more important than their substance [Heisenberg]
     Full Idea: The smallest parts of matter are not the fundamental Beings, as in the philosophy of Democritus, but are mathematical forms. Here it is quite evident that the form is more important than the substance of which it is the form.
     From: Werner Heisenberg (Physics and Philosophy [1958], 04)
     A reaction: Heisenberg is quite consciously endorsing hylomorphism here, with a Pythagorean twist to it.
10. Modality / A. Necessity / 2. Nature of Necessity
'Necessary' is a predicate of a propositional function, saying it is true for all values of its argument [Russell]
     Full Idea: 'Necessary' is a predicate of a propositional function, meaning that it is true for all possible values of its argument or arguments. Thus 'If x is a man, x is mortal' is necessary, because it is true for any possible value of x.
     From: Bertrand Russell (On the Notion of Cause [1912], p.175)
     A reaction: This is presumably the intermediate definition of necessity, prior to modern talk of possible worlds. Since it is a predicate about functions, it is presumably a metalinguistic concept, like the semantic concept of truth.
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
We give a mathematical account of a system of natural connections in order to clarify them [Heisenberg]
     Full Idea: When we represent a group of connections by a closed and coherent set of concepts, axioms, definitions and laws which in turn is represented by a mathematical scheme we have isolated and idealised them with the purpose of clarification.
     From: Werner Heisenberg (Physics and Philosophy [1958], 06)
     A reaction: Attacks on the regularity theory of laws, and the notion that explanation is by laws, tend to downplay this point - that obtaining clarity and precision is a sort of explanation, even if it fails to go deeper.
26. Natural Theory / C. Causation / 7. Eliminating causation
The law of causality is a source of confusion, and should be dropped from philosophy [Russell]
     Full Idea: The law of causality, I believe, like much that passes muster among philosophers, is a relic of a bygone age, surviving, like the monarchy, only because it is erroneously supposed to do no harm.
     From: Bertrand Russell (On the Notion of Cause [1912], p.173)
     A reaction: A bold proposal which should be taken seriously. However, if we drop it from scientific explanation, we may well find ourselves permanently stuck with it in 'folk' explanation. What is the alternative?
If causes are contiguous with events, only the last bit is relevant, or the event's timing is baffling [Russell]
     Full Idea: A cause is an event lasting for a finite time, but if cause and effect are contiguous then the earlier part of a changing cause can be altered without altering the effect, and a static cause will exist placidly for some time and then explode into effect.
     From: Bertrand Russell (On the Notion of Cause [1912], p.177)
     A reaction: [very compressed] He concludes that they can't be contiguous (and eventually rejects cause entirely). This kind of problem is the sort of thing that only bothers philosophers - the question of how anything can happen at all. Why change?
26. Natural Theory / C. Causation / 9. General Causation / a. Constant conjunction
Striking a match causes its igniting, even if it sometimes doesn't work [Russell]
     Full Idea: A may be the cause of B even if there actually are cases of B not following A. Striking a match will be the cause of its igniting, in spite of the fact that some matches are damp and fail to ignite.
     From: Bertrand Russell (On the Notion of Cause [1912], p.185)
     A reaction: An important point, although defenders of the constant conjunction view can cope with it. There is a further regularity between dampness of matches and their failure to strike.
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
Seven theories in science: mechanics, heat, electricity, quantum, particles, relativity, life [Heisenberg, by PG]
     Full Idea: Science has seven closed systems of concepts and axioms: Newtonian mechanics; the theory of heat; electricity and magnetism; quantum theory; the theory of elementary particles; general relativity; and the theory of organic life.
     From: report of Werner Heisenberg (Physics and Philosophy [1958], 06) by PG - Db (ideas)
     A reaction: [my summary of pp.86-88 and 92] It is interesting to have spelled out that there are number of 'closed' theories, which are only loosely connected to one another. New discoveries launch whole new theories, instead of being subsumed.
26. Natural Theory / D. Laws of Nature / 5. Laws from Universals
In causal laws, 'events' must recur, so they have to be universals, not particulars [Russell]
     Full Idea: An 'event' (in a statement of the 'law of causation') is intended to be something that is likely to recur, since otherwise the law becomes trivial. It follows that an 'event' is not some particular, but a universal of which there may be many instances.
     From: Bertrand Russell (On the Notion of Cause [1912], p.179)
     A reaction: I am very struck by this. It may be a key insight into understanding what a law of nature actually is. It doesn't follow that we must be realists about universals, but the process of abstraction from particulars is at the heart of generalisation.
26. Natural Theory / D. Laws of Nature / 6. Laws as Numerical
The constancy of scientific laws rests on differential equations, not on cause and effect [Russell]
     Full Idea: It is not in the sameness of causes and effects that the constancy of scientific law consists, but in sameness of relations. And even 'sameness of relations' is too simple a phrase; 'sameness of differential equations' is the only correct phrase.
     From: Bertrand Russell (On the Notion of Cause [1912], p.186)
     A reaction: This seems to be a commitment to the regularity view, since there is nothing more to natural law than that the variables keeping obeying the equations. It also seems to be a very instrumentalist view.
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / a. Energy
Energy is that which moves, and is the substance from which everything is made [Heisenberg]
     Full Idea: Energy is the substance from which all elementary particles, all atoms and therefore all things are made, and energy is that which moves.
     From: Werner Heisenberg (Physics and Philosophy [1958], 04)
     A reaction: I'm not sure what energy is, but I like this because it says that nature is fundamentally active. Nothing makes sense without that basic assumption (on which Leibniz continually insists).
Energy is an unchanging substance, having many forms, and causing all change [Heisenberg]
     Full Idea: Energy is a substance, since its total amount does not change. ...Energy can be changed into motion, into heat, into light and into tension. Energy may be called the fundamental cause for all change in the world.
     From: Werner Heisenberg (Physics and Philosophy [1958], 04)
     A reaction: Grandiose stuff. I remain unconvinced that Heisenberg (clever fellow, I'm told) has any idea of what he is talking about.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
Maxwell introduced real fields, which transferred forces from point to point [Heisenberg]
     Full Idea: In the theory of fields of force one came back to the older idea, that action is transferred from one point to a neighbouring point. ...With Maxwell the fields of force seemed to have acquired the same degree of reality as the body's of Newton's theory.
     From: Werner Heisenberg (Physics and Philosophy [1958], 06)
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Radiation interference needs waves, but radiation photoelectric effects needs particles [Heisenberg]
     Full Idea: How could it be that the same radiation that produces interference patterns, and therefore must consist of waves, also produces the photoelectric effect, and therefore must consist of moving particles.
     From: Werner Heisenberg (Physics and Philosophy [1958], 02)
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
Position is complementary to velocity or momentum, so the whole system is indeterminate [Heisenberg]
     Full Idea: The knowledge of the position of a particle is complementary to the knowledge of its velocity or momentum. If we know one with high accuracy we cannot know the other with high accuracy; still we must know both for determining the behaviour of the system.
     From: Werner Heisenberg (Physics and Philosophy [1958], 03)
     A reaction: This is the famous Uncertainty Principle, expressed in plain language by the man himself. At this point we lost our grip on the prospects of determining the behaviour of natural systems.
It was formerly assumed that electromagnetic waves could not be a reality in themselves [Heisenberg]
     Full Idea: The idea that electromagnetic waves could be a reality in themselves, independent of any bodies, did at that time not occur to the physicists.
     From: Werner Heisenberg (Physics and Philosophy [1958], 07)
     A reaction: 'At that time' is when they thought the waves must travel through something, called the 'ether'.
An atom's stability after collisions needs explaining (which Newton's mechanics can't do) [Heisenberg]
     Full Idea: The first new model of the atom could not explain the most characteristic features of the atom, its enormous stability. No planetary system following the laws of Newton's mechanics would ever go back to its original configuration after a collision.
     From: Werner Heisenberg (Physics and Philosophy [1958], 02)
27. Natural Reality / C. Space / 4. Substantival Space
So-called 'empty' space is the carrier of geometry and kinematics [Heisenberg]
     Full Idea: From our modern point of view we would say that the empty space between the atoms was not nothing; it was the carrier of geometry and kinematics.
     From: Werner Heisenberg (Physics and Philosophy [1958], 04)
     A reaction: I'm not sure what the 'carrier of geometry and kinematics' means, but it is interesting that he doesn't mention 'fields' (unless they carry the kinematics?)
27. Natural Reality / D. Time / 3. Parts of Time / e. Present moment
In relativity the length of the 'present moment' is relative to distance from the observer [Heisenberg]
     Full Idea: In classical theory we assume past and future are separated by an infinitely short time interval called the present moment. In relativity it is different: future and past are separated by a finite time interval dependent on the distance from the observer.
     From: Werner Heisenberg (Physics and Philosophy [1958], 07)
     A reaction: Not sure I understand this, but it is a revelation to realise that not only is time made relative to observers, but the length of the 'present moment' also becomes relative. The infinitesimal present moment has always bothered me.