Combining Texts

All the ideas for 'works', 'Abstract Objects: a Case Study' and 'First-order Logic, 2nd-order, Completeness'

unexpand these ideas     |    start again     |     specify just one area for these texts


15 ideas

5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic needs the sets, and its consequence has epistemological problems [Rossberg]
     Full Idea: Second-order logic raises doubts because of its ontological commitment to the set-theoretic hierarchy, and the allegedly problematic epistemic status of the second-order consequence relation.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §1)
     A reaction: The 'epistemic' problem is whether you can know the truths, given that the logic is incomplete, and so they cannot all be proved. Rossberg defends second-order logic against the second problem. A third problem is that it may be mathematics.
Henkin semantics has a second domain of predicates and relations (in upper case) [Rossberg]
     Full Idea: Henkin semantics (for second-order logic) specifies a second domain of predicates and relations for the upper case constants and variables.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This second domain is restricted to predicates and relations which are actually instantiated in the model. Second-order logic is complete with this semantics. Cf. Idea 10756.
There are at least seven possible systems of semantics for second-order logic [Rossberg]
     Full Idea: In addition to standard and Henkin semantics for second-order logic, one might also employ substitutional or game-theoretical or topological semantics, or Boolos's plural interpretation, or even a semantics inspired by Lesniewski.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This is helpful in seeing the full picture of what is going on in these logical systems.
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Logical consequence is intuitively semantic, and captured by model theory [Rossberg]
     Full Idea: Logical consequence is intuitively taken to be a semantic notion, ...and it is therefore the formal semantics, i.e. the model theory, that captures logical consequence.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §2)
     A reaction: If you come at the issue from normal speech, this seems right, but if you start thinking about the necessity of logical consequence, that formal rules and proof-theory seem to be the foundation.
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Γ |- S says S can be deduced from Γ; Γ |= S says a good model for Γ makes S true [Rossberg]
     Full Idea: Deductive consequence, written Γ|-S, is loosely read as 'the sentence S can be deduced from the sentences Γ', and semantic consequence Γ|=S says 'all models that make Γ true make S true as well'.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §2)
     A reaction: We might read |= as 'true in the same model as'. What is the relation, though, between the LHS and the RHS? They seem to be mutually related to some model, but not directly to one another.
5. Theory of Logic / D. Assumptions for Logic / 3. Contradiction
Contradiction is not a sign of falsity, nor lack of contradiction a sign of truth [Pascal]
     Full Idea: Contradiction is not a sign of falsity, nor the lack of contradiction a sign of truth.
     From: Blaise Pascal (works [1660]), quoted by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: [Quoted in Auden and Kronenberger's Book of Aphorisms] Presumably we would now say that contradiction is a purely formal, syntactic notion, and not a semantic one. If you hit a contradiction, something has certainly gone wrong.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
In proof-theory, logical form is shown by the logical constants [Rossberg]
     Full Idea: A proof-theorist could insist that the logical form of a sentence is exhibited by the logical constants that it contains.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §2)
     A reaction: You have to first get to the formal logical constants, rather than the natural language ones. E.g. what is the truth table for 'but'? There is also the matter of the quantifiers and the domain, and distinguishing real objects and predicates from bogus.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A model is a domain, and an interpretation assigning objects, predicates, relations etc. [Rossberg]
     Full Idea: A standard model is a set of objects called the 'domain', and an interpretation function, assigning objects in the domain to names, subsets to predicate letters, subsets of the Cartesian product of the domain with itself to binary relation symbols etc.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: The model actually specifies which objects have which predicates, and which objects are in which relations. Tarski's account of truth in terms of 'satisfaction' seems to be just a description of those pre-decided facts.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
If models of a mathematical theory are all isomorphic, it is 'categorical', with essentially one model [Rossberg]
     Full Idea: A mathematical theory is 'categorical' if, and only if, all of its models are isomorphic. Such a theory then essentially has just one model, the standard one.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: So the term 'categorical' is gradually replacing the much-used phrase 'up to isomorphism'.
5. Theory of Logic / K. Features of Logics / 4. Completeness
Completeness can always be achieved by cunning model-design [Rossberg]
     Full Idea: All that should be required to get a semantics relative to which a given deductive system is complete is a sufficiently cunning model-theorist.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §5)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
A deductive system is only incomplete with respect to a formal semantics [Rossberg]
     Full Idea: No deductive system is semantically incomplete in and of itself; rather a deductive system is incomplete with respect to a specified formal semantics.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This important point indicates that a system might be complete with one semantics and incomplete with another. E.g. second-order logic can be made complete by employing a 'Henkin semantics'.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Mathematics is both necessary and a priori because it really consists of logical truths [Yablo]
     Full Idea: Mathematics seems necessary because the real contents of mathematical statements are logical truths, which are necessary, and it seems a priori because logical truths really are a priori.
     From: Stephen Yablo (Abstract Objects: a Case Study [2002], 10)
     A reaction: Yablo says his logicism has a Kantian strain, because numbers and sets 'inscribed on our spectacles', but he takes a different view (in the present Idea) from Kant about where the necessity resides. Personally I am tempted by an a posteriori necessity.
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Putting numbers in quantifiable position (rather than many quantifiers) makes expression easier [Yablo]
     Full Idea: Saying 'the number of Fs is 5', instead of using five quantifiers, puts the numeral in quantifiable position, which brings expressive advantages. 'There are more sheep in the field than cows' is an infinite disjunction, expressible in finite compass.
     From: Stephen Yablo (Abstract Objects: a Case Study [2002], 08)
     A reaction: See Hofweber with similar thoughts. This idea I take to be a key one in explaining many metaphysical confusions. The human mind just has a strong tendency to objectify properties, relations, qualities, categories etc. - for expression and for reasoning.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
Concrete objects have few essential properties, but properties of abstractions are mostly essential [Yablo]
     Full Idea: Objects like me have a few essential properties, and numerous accidental ones. Abstract objects are a different story. The intrinsic properties of the empty set are mostly essential. The relations of numbers are also mostly essential.
     From: Stephen Yablo (Abstract Objects: a Case Study [2002], 01)
We are thought to know concreta a posteriori, and many abstracta a priori [Yablo]
     Full Idea: Our knowledge of concreta is a posteriori, but our knowledge of numbers, at least, has often been considered a priori.
     From: Stephen Yablo (Abstract Objects: a Case Study [2002], 02)