Combining Texts

All the ideas for 'Katzav on limitations of dispositions', 'Particle Physics' and 'fragments/reports'

unexpand these ideas     |    start again     |     specify just one area for these texts


20 ideas

22. Metaethics / C. The Good / 2. Happiness / b. Eudaimonia
Critolaus redefined Aristotle's moral aim as fulfilment instead of happiness [Critolaus, by White,SA]
     Full Idea: Critolaus reformulated Aristotelian theory by defining happiness as a 'fulfilment' (sumplêrôma) of psychic, physical, and external goods, where virtue vastly outweighs the rest.
     From: report of Critolaus (fragments/reports [c.170 BCE]) by Stephen A. White - Critolaus
     A reaction: The sounds more like an attempt at clarification than a real change of Peripatetic doctrine. Occasionally 'fulfilment' is offered as a translation for eudaimonia. Maybe we should just take up Critolaus' suggestion when we are discussing Aristotle.
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
The natural kinds are objects, processes and properties/relations [Ellis]
     Full Idea: There are three hierarchies of natural kinds: objects or substances (substantive universals), events or processes (dynamic universals), and properties or relations (tropic universals).
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 91)
     A reaction: Most interesting here is the identifying of natural kinds with universals, making universals into the families of nature. Universals are high-level sets of natural kinds. To grasp universals you must see patterns, and infer the underlying order.
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
Least action is not a causal law, but a 'global law', describing a global essence [Ellis]
     Full Idea: The principle of least action is not a causal law, but is what I call a 'global law', which describes the essence of the global kind, which every object in the universe necessarily instantiates.
     From: Brian Ellis (Katzav on limitations of dispositions [2005])
     A reaction: As a fan of essentialism I find this persuasive. If I inherit part of my essence from being a mammal, I inherit other parts of my essence from being an object, and all objects would share that essence, so it would look like a 'law' for all objects.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / a. Scientific essentialism
A species requires a genus, and its essence includes the essence of the genus [Ellis]
     Full Idea: A specific universal can exist only if the generic universal of which it is a species exists, but generic universals don't depend on species; …the essence of any genus is included in its species, but not conversely.
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 91)
     A reaction: Thus the species 'electron' would be part of the genus 'lepton', or 'human' part of 'mammal'. The point of all this is to show how individual items connect up with the rest of the universe, giving rise to universal laws, such as Least Action.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
A hierarchy of natural kinds is elaborate ontology, but needed to explain natural laws [Ellis]
     Full Idea: The hierarchy of natural kinds proposed by essentialism may be more elaborate than is strictly required for purposes of ontology, but it is necessary to explain the necessity of the laws of nature, and the universal applicability of global principles.
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 91)
     A reaction: I am all in favour of elaborating ontology in the name of best explanation. There seem, though, to be some remaining ontological questions at the point where the explanations of essentialism run out.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
Without general principles, we couldn't predict the behaviour of dispositional properties [Ellis]
     Full Idea: It is objected to dispositionalism that without the principle of least action, or some general principle of equal power, the specific dispositional properties of things could tell us very little about how these things would be disposed to behave.
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 90)
     A reaction: Ellis attempts to meet this criticism, by placing dispositional properties within a hierarchy of broader properties. There remains a nagging doubt about how essentialism can account for space, time, order, and the existence of essences.
27. Natural Reality / A. Classical Physics / 1. Mechanics / c. Forces
The strong force has a considerably greater range than the weak force [Martin,BR]
     Full Idea: The strong nuclear force has a range of 10^-15 m, considerably larger than the range of the weak force.
     From: Brian R. Martin (Particle Physics [2011], 01)
     A reaction: This is because the bosons transmitting the weak force (W+, W-, W°) are much heavier than the gluons of the strong force.
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / c. Conservation of energy
If an expected reaction does not occur, that implies a conservation law [Martin,BR]
     Full Idea: If some reaction is not observed when there is apparently nothing to prevent it occurring, it is an indication that a conservation law is in operation.
     From: Brian R. Martin (Particle Physics [2011], 07)
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Electron emit and reabsorb photons, which create and reabsorb virtual electrons and positrons [Martin,BR]
     Full Idea: In QED an electron constantly emits and reabsorbs virtual photons and these photons constantly create and reabsorb pairs of virtual electrons and positrons, and so on.
     From: Brian R. Martin (Particle Physics [2011], 06)
     A reaction: 'And so on'! These virtual particles have energy, and hence mass.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
A 'field' is just a region to which points can be assigned in space and time [Martin,BR]
     Full Idea: The word 'field' is simply a shorthand way of saying that a physical property is assigned to the points of space and time in a region.
     From: Brian R. Martin (Particle Physics [2011], 01)
     A reaction: This is disappointing because I had begun to think that fields were foundational for modern ontology. Turns out they are operational abstractions (according to Martin). Note that a field extends over time.
The Higgs field, unlike others, has a nozero value in a state without particles [Martin,BR]
     Full Idea: The Higgs field has the property of having a nonzero value in a state without particles, the vacuum state. Other fields are assumed to have a value zero in a vacuum state.
     From: Brian R. Martin (Particle Physics [2011], 09)
     A reaction: This seems to make a big difference to our concept of a field, since it has a measurable reality even when there are no particles. So it isn't just a geometrical frame for locating particles.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Many physicists believe particles have further structure, if only we could see it [Martin,BR]
     Full Idea: Although standard particles are assumed to be structureless, many physicists believe that if distances could be probed down to 10^-35 m structures would be discovered.
     From: Brian R. Martin (Particle Physics [2011], 01)
     A reaction: Such probing is said to be probably impossible. And does the division then come to a halt? Aristotle's meditations on this are not irrelevant.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Uncertainty allows very brief violations of energy conservation - even shorter with higher energies [Martin,BR]
     Full Idea: The uncertainty principle states that energy conservation can be violated, but only for a limited period of time. As the energy violation increases, the time period within which 'borrowed' energy has to be 'paid back' decreases.
     From: Brian R. Martin (Particle Physics [2011], 01)
     A reaction: This is the only reason modern physicists ever seem to mention the uncertainty principle. You can ask why this debt must be paid, but it seems to be hidden where the laws of physics may not even apply.
The Exclusion Principle says no two fermions occupy the same state, with the same numbers [Martin,BR]
     Full Idea: The 'exclusion principle' initially stated that no two electrons in a system could simultaneously occupy the same quantum state and thus have the same set of quantum numbers. The principle actually applies to all fermions, but not to bosons.
     From: Brian R. Martin (Particle Physics [2011], 02)
     A reaction: This principle is said to be at the root of atomic structure, making each element unique. What exactly is a 'system'? Why does this principle hold? How do you ensure two women don't wear the same dress at a party?
27. Natural Reality / B. Modern Physics / 4. Standard Model / b. Standard model
The standard model combines theories of strong interaction, and electromagnetic and weak interaction [Martin,BR]
     Full Idea: As presently formulated, the standard model is two theories. One operates in the sector of strong interaction, and the other in the sector of the electromagnetic and weak interactions.
     From: Brian R. Martin (Particle Physics [2011], 01)
     A reaction: The first is Quantum Chomodynamics (QCD). The second is Quantum Electrodynamics (QED). Interesting that the weak interaction is included in the latter, which (I take it) means there is an electro-weak union. Interactions are the heart of the model.
27. Natural Reality / B. Modern Physics / 4. Standard Model / c. Particle properties
Eletrons don't literally 'spin', because they are point-like [Martin,BR]
     Full Idea: The picture of a particle spinning like a top is sometime useful, but it is not consistent with the idea of the electron being point-like. In fact there is no analogy for spin in non-quantum physics.
     From: Brian R. Martin (Particle Physics [2011], 02)
     A reaction: If we take this stuff literally then it blow traditional metaphysics to bits, because an electron has properties without being a substance. In what sense can an electron 'have' properties if it is a point? In interactions they cease to be points. Eh?
Virtual particles surround any charged particle [Martin,BR]
     Full Idea: A cloud of virtual particles always surrounds a charged particle.
     From: Brian R. Martin (Particle Physics [2011], 06)
     A reaction: Here's a nice fact for aspiring Buddhists to meditate on.
The properties of a particle are determined by its quantum numbers and its mass [Martin,BR]
     Full Idea: In quantum theory, the full set of quantum numbers defines the state of the particle and, along with its mass, determines its properties.
     From: Brian R. Martin (Particle Physics [2011], 02)
27. Natural Reality / B. Modern Physics / 5. Unified Models / b. String theory
String theory only has one free parameter (tension) - unlike the standard model with 19 [Martin,BR]
     Full Idea: Unlike the standard model, with its 19 free parameters (including the masses of quarks, coupling constants and mixing angles), string theories have a single free paramater: the string tension.
     From: Brian R. Martin (Particle Physics [2011], 10)
     A reaction: This must be one feature in favour of string theory, despite its problems.
27. Natural Reality / F. Chemistry / 2. Modern Elements
An 'element' is what cannot be decomposed by chemistry [Martin,BR]
     Full Idea: In the modern sense 'element' means a substance that cannot be decomposed by the methods of chemistry.
     From: Brian R. Martin (Particle Physics [2011], 01)