Combining Texts

All the ideas for 'Katzav on limitations of dispositions', 'Cardinality, Counting and Equinumerosity' and 'Quine on Quantifying In'

unexpand these ideas     |    start again     |     specify just one area for these texts


18 ideas

5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Is it the sentence-token or the sentence-type that has a logical form? [Fine,K]
     Full Idea: Do we attribute a logical form to a sentence token because it is a token of a type with that form, or do we attribute a logical form to a sentence type because it is a type of a token with that form?
     From: Kit Fine (Quine on Quantifying In [1990], p.110)
     A reaction: Since I believe in propositions (as the unambiguous thought that lies behind a sentence), I take it that logical form concerns propositions, though strict logicians don't like this, for fear that logic spills into psychology.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Substitutional quantification is referential quantification over expressions [Fine,K]
     Full Idea: Substitutional quantification may be regarded as referential quantification over expressions.
     From: Kit Fine (Quine on Quantifying In [1990], p.124)
     A reaction: This is an illuminating gloss. Does such quantification involve some ontological commitment to expressions? I feel an infinite regress looming.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
The meaning of a number isn't just the numerals leading up to it [Heck]
     Full Idea: My knowing what the number '33' denotes cannot consist in my knowing that it denotes the number of decimal numbers between '1' and '33', because I would know that even if it were in hexadecimal (which I don't know well).
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: Obviously you wouldn't understand '33' if you didn't understand what '33 things' meant.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A basic grasp of cardinal numbers needs an understanding of equinumerosity [Heck]
     Full Idea: An appreciation of the connection between sameness of number and equinumerosity that it reports is essential to even the most primitive grasp of the concept of cardinal number.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 6)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
In counting, numerals are used, not mentioned (as objects that have to correlated) [Heck]
     Full Idea: One need not conceive of the numerals as objects in their own right in order to count. The numerals are not mentioned in counting (as objects to be correlated with baseball players), but are used.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 3)
     A reaction: He observes that when you name the team, you aren't correlating a list of names with the players. I could correlate any old tags with some objects, and you could tell me the cardinality denoted by the last tag. I do ordinals, you do cardinals.
Is counting basically mindless, and independent of the cardinality involved? [Heck]
     Full Idea: I am not denying that counting can be done mindlessly, without making judgments of cardinality along the way. ...But the question is whether counting is, as it were, fundamentally a mindless exercise.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: He says no. It seems to me like going on a journey, where you can forget where you are going and where you have got to so far, but those underlying facts are always there. If you just tag things with unknown foreign numbers, you aren't really counting.
Counting is the assignment of successively larger cardinal numbers to collections [Heck]
     Full Idea: Counting is not mere tagging: it is the successive assignment of cardinal numbers to increasingly large collections of objects.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: That the cardinals are 'successive' seems to mean that they are ordinals as well. If you don't know that 'seven' means a cardinality, as well as 'successor of six', you haven't understood it. Days of the week have successors. Does PA capture cardinality?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / e. Counting by correlation
Understanding 'just as many' needn't involve grasping one-one correspondence [Heck]
     Full Idea: It is far from obvious that knowing what 'just as many' means requires knowing what a one-one correspondence is. The notion of a one-one correspondence is very sophisticated, and it is far from clear that five-year-olds have any grasp of it.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 4)
     A reaction: The point is that children decide 'just as many' by counting each group and arriving at the same numeral, not by matching up. He cites psychological research by Gelman and Galistel.
We can know 'just as many' without the concepts of equinumerosity or numbers [Heck]
     Full Idea: 'Just as many' is independent of the ability to count, and we shouldn't characterise equinumerosity through counting. It is also independent of the concept of number. Enough cookies to go round doesn't need how many cookies.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 4)
     A reaction: [compressed] He talks of children having an 'operational' ability which is independent of these more sophisticated concepts. Interesting. You see how early man could relate 'how many' prior to the development of numbers.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Frege's Theorem explains why the numbers satisfy the Peano axioms [Heck]
     Full Idea: The interest of Frege's Theorem is that it offers us an explanation of the fact that the numbers satisfy the Dedekind-Peano axioms.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 6)
     A reaction: He says 'explaining' does not make it more fundamental, since all proofs explain why their conclusions hold.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Children can use numbers, without a concept of them as countable objects [Heck]
     Full Idea: For a long time my daughter had no understanding of the question of how many numerals or numbers there are between 'one' and 'five'. I think she lacked the concept of numerals as objects which can themselves be counted.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: I can't make any sense of numbers actually being objects, though clearly treating all sorts of things as objects helps thinking (as in 'the victory is all that matters').
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Equinumerosity is not the same concept as one-one correspondence [Heck]
     Full Idea: Equinumerosity is not the same concept as being in one-one correspondence with.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 6)
     A reaction: He says this is the case, even if they are coextensive, like renate and cordate. You can see that five loaves are equinumerous with five fishes, without doing a one-one matchup.
We can understand cardinality without the idea of one-one correspondence [Heck]
     Full Idea: One can have a perfectly serviceable concept of cardinality without so much as having the concept of one-one correspondence.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 3)
     A reaction: This is the culmination of a lengthy discussion. It includes citations about the psychology of children's counting. Cardinality needs one group of things, and 1-1 needs two groups.
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
The natural kinds are objects, processes and properties/relations [Ellis]
     Full Idea: There are three hierarchies of natural kinds: objects or substances (substantive universals), events or processes (dynamic universals), and properties or relations (tropic universals).
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 91)
     A reaction: Most interesting here is the identifying of natural kinds with universals, making universals into the families of nature. Universals are high-level sets of natural kinds. To grasp universals you must see patterns, and infer the underlying order.
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
Least action is not a causal law, but a 'global law', describing a global essence [Ellis]
     Full Idea: The principle of least action is not a causal law, but is what I call a 'global law', which describes the essence of the global kind, which every object in the universe necessarily instantiates.
     From: Brian Ellis (Katzav on limitations of dispositions [2005])
     A reaction: As a fan of essentialism I find this persuasive. If I inherit part of my essence from being a mammal, I inherit other parts of my essence from being an object, and all objects would share that essence, so it would look like a 'law' for all objects.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / a. Scientific essentialism
A species requires a genus, and its essence includes the essence of the genus [Ellis]
     Full Idea: A specific universal can exist only if the generic universal of which it is a species exists, but generic universals don't depend on species; …the essence of any genus is included in its species, but not conversely.
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 91)
     A reaction: Thus the species 'electron' would be part of the genus 'lepton', or 'human' part of 'mammal'. The point of all this is to show how individual items connect up with the rest of the universe, giving rise to universal laws, such as Least Action.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
A hierarchy of natural kinds is elaborate ontology, but needed to explain natural laws [Ellis]
     Full Idea: The hierarchy of natural kinds proposed by essentialism may be more elaborate than is strictly required for purposes of ontology, but it is necessary to explain the necessity of the laws of nature, and the universal applicability of global principles.
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 91)
     A reaction: I am all in favour of elaborating ontology in the name of best explanation. There seem, though, to be some remaining ontological questions at the point where the explanations of essentialism run out.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
Without general principles, we couldn't predict the behaviour of dispositional properties [Ellis]
     Full Idea: It is objected to dispositionalism that without the principle of least action, or some general principle of equal power, the specific dispositional properties of things could tell us very little about how these things would be disposed to behave.
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 90)
     A reaction: Ellis attempts to meet this criticism, by placing dispositional properties within a hierarchy of broader properties. There remains a nagging doubt about how essentialism can account for space, time, order, and the existence of essences.