Combining Texts

All the ideas for 'Confessions of a Philosopher', 'Set Theory' and 'Natural Theology'

unexpand these ideas     |    start again     |     specify just one area for these texts


17 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
16. Persons / C. Self-Awareness / 3. Limits of Introspection
Why don't we experience or remember going to sleep at night? [Magee]
     Full Idea: As a child it was incomprehensible to me that I did not experience going to sleep, and never remembered it. When my sister said 'Nobody remembers that', I just thought 'How does she know?'
     From: Bryan Magee (Confessions of a Philosopher [1997], Ch.I)
     A reaction: This is actually evidence for something - that we do not have some sort of personal identity which is separate from consciousness, so that "I am conscious" would literally mean that an item has a property, which it can lose.
28. God / B. Proving God / 3. Proofs of Evidence / b. Teleological Proof
Unlike a stone, the parts of a watch are obviously assembled in order to show the time [Paley]
     Full Idea: When we come to inspect a watch we perceive (what we could not discover in a stone) that its several parts are put together for a purpose, to produce motion, and that motion so regulated as to point out the hour of the day.
     From: William Paley (Natural Theology [1802], Ch 1)
     A reaction: Microscopic examination of the stone would have surprised Paley. Should we infer a geometer because the sun is spherical? Crytals look designed, but are explained by deeper chemistry.
From the obvious purpose and structure of a watch we must infer that it was designed [Paley]
     Full Idea: The inference is inevitable that the watch had a maker; that there must have existed, at some time, an artificer or artificers who formed it for the purpose which we find it actually to answer, who designed its use.
     From: William Paley (Natural Theology [1802], Ch 1)
     A reaction: It rather begs the question to refer to an ordered structure as a 'design'. Why do we think it is absurd to think the the 'purpose' of the sun is to benefit mankind? Suppose we found a freakish natural sundial in the woods.
Even an imperfect machine can exhibit obvious design [Paley]
     Full Idea: It is not necessary that a machine be perfect, in order to show with what design it was made.
     From: William Paley (Natural Theology [1802], Ch 1)
     A reaction: This encounters Hume's point that you will then have to infer that the designer contains similar imperfections. If you look at plagues, famines and mothers dying in childbirth (see Mill), you might wish the designer had never started.
All the signs of design found in a watch are also found in nature [Paley]
     Full Idea: Every indication of contrivance, every manifestation of design, which existed in the watch, exists in the works of nature.
     From: William Paley (Natural Theology [1802], Ch.3)
     A reaction: This is far from obvious. It was crucial to the watch analogy that we immediately see its one self-evident purpose. No one looks at nature and says 'Aha, I know what this is all for'.
No organ shows purpose more obviously than the eyelid [Paley]
     Full Idea: The eyelid defends the eye; it wipes it; it closes it in sleep. Are there, in any work of art whatever, purposes more evident than those which this organ fulfils?
     From: William Paley (Natural Theology [1802], p.24), quoted by Armand Marie LeRoi - The Lagoon: how Aristotle invented science 031
     A reaction: Nice to have another example, in addition to the watch. He is not wholly wrong, because it is impossible to give an evolutionary account of the development of the eyelid without referring to some sort of teleological aspect. The eyelid has a function.